Bell's primeness criterion for {$W(2n+1)$}
Wilson, Mark C. ; Pritchard, Geoffrey ; Wood, David H.
Experiment. Math., Tome 6 (1997) no. 4, p. 77-85 / Harvested from Project Euclid
On the basis of experimental work involving matrix computations, we conjecture and prove that a criterion due to Bell for primeness of the universal enveloping algebra of a Lie superalgebra applies to the Cartan type Lie superalgebras $W(n)$ for $n=3$ but does not apply for odd $n\geq5$.
Publié le : 1997-05-14
Classification:  17B35
@article{1047565285,
     author = {Wilson, Mark C. and Pritchard, Geoffrey and Wood, David H.},
     title = {Bell's primeness criterion for {$W(2n+1)$}},
     journal = {Experiment. Math.},
     volume = {6},
     number = {4},
     year = {1997},
     pages = { 77-85},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1047565285}
}
Wilson, Mark C.; Pritchard, Geoffrey; Wood, David H. Bell's primeness criterion for {$W(2n+1)$}. Experiment. Math., Tome 6 (1997) no. 4, pp.  77-85. http://gdmltest.u-ga.fr/item/1047565285/