Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.
Megan, Mihail ; Sasu, Adina Luminiţa ; Sasu, Bogdan
Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, p. 1-21 / Harvested from Project Euclid
We study the connections between the uniform exponential dichotomy of a discrete linear skew-product semiflow and the uniform admissibility of the pair $(c_{0}(\n,X),c_{00}(\n, X))$. We give necessary and sufficient conditions for uniform exponential dichotomy of linear skew-product semiflows in terms of the uniform admissibility of the pairs $(c_{0}(\n, X),c_{00}(\n, X))$ and $(C_0(\r, X),$ $C_{00}(\r, X))$, respectively. We generalize a dichotomy theorem due to Van Minh, Räbiger and Schnaubelt for the case of linear skew-product semiflows.
Publié le : 2003-01-14
Classification:  uniform exponential dichotomy,  linear skew-product semiflows,  34D09,  34D05,  39A12
@article{1047309409,
     author = {Megan, Mihail and Sasu, Adina Lumini\c ta and Sasu, Bogdan},
     title = {Theorems of Perron type for 
 uniform exponential dichotomy of linear skew-product semiflows.},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {10},
     number = {1},
     year = {2003},
     pages = { 1-21},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1047309409}
}
Megan, Mihail; Sasu, Adina Luminiţa; Sasu, Bogdan. Theorems of Perron type for 
 uniform exponential dichotomy of linear skew-product semiflows.. Bull. Belg. Math. Soc. Simon Stevin, Tome 10 (2003) no. 1, pp.  1-21. http://gdmltest.u-ga.fr/item/1047309409/