The volume spectrum of hyperbolic 4-manifolds
Ratcliffe, John G. ; Tschantz, Steven T.
Experiment. Math., Tome 9 (2000) no. 3, p. 101-125 / Harvested from Project Euclid
We construct complete, open, hyperbolic 4-manifolds of smallest volume by gluing together the sides of a regular ideal 24-cell in hyperbolic 4-space. We also show that the volume spectrum of hyperbolic 4-manifolds is the set of all positive integral multiples of $4\pi^2/3$.
Publié le : 2000-05-14
Classification:  Hyperbolic manifolds,  4-manifolds,  volume,  24-cell,  57N13,  57M50
@article{1046889595,
     author = {Ratcliffe, John G. and Tschantz, Steven T.},
     title = {The volume spectrum of hyperbolic 4-manifolds},
     journal = {Experiment. Math.},
     volume = {9},
     number = {3},
     year = {2000},
     pages = { 101-125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1046889595}
}
Ratcliffe, John G.; Tschantz, Steven T. The volume spectrum of hyperbolic 4-manifolds. Experiment. Math., Tome 9 (2000) no. 3, pp.  101-125. http://gdmltest.u-ga.fr/item/1046889595/