Convergence to equilibrium of conservative particle systems on $\mathbb{Z}^{\bm{d}}$
Landim, C. ; Yau, H. T.
Ann. Probab., Tome 31 (2003) no. 1, p. 115-147 / Harvested from Project Euclid
We consider the Ginzburg--Landau process on the lattice $\mathbb{Z}^d$ whose potential is a bounded perturbation of the Gaussian potential. We prove that the decay rate to equilibrium in the variance sense is $t^{-d/2}$ up to a~logarithmic correction, for any function $u$ with finite triple norm; that is, $|\!|\!| u |\!|\!| \;=\; \sum_{x\in \mathbb{Z}^d} \Vert \partial_{\eta_x} u \Vert_\infty < \infty$.
Publié le : 2003-01-14
Classification:  Interacting particle systems,  polynomial convergence to equilibrium,  Nash inequality,  60K35,  82A05
@article{1046294306,
     author = {Landim, C. and Yau, H. T.},
     title = {Convergence to equilibrium of conservative particle systems on $\mathbb{Z}^{\bm{d}}$},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 115-147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1046294306}
}
Landim, C.; Yau, H. T. Convergence to equilibrium of conservative particle systems on $\mathbb{Z}^{\bm{d}}$. Ann. Probab., Tome 31 (2003) no. 1, pp.  115-147. http://gdmltest.u-ga.fr/item/1046294306/