We discuss scaling in the parameter space of a family of maps arising from the iteration of a map of the two-torus defined in terms of a Jacobian elliptic function. This map appears to show a complex analog of the
Feigenbaum-Kadanoff-Shenker scaling found in bifurcation sequences of circle maps.
Publié le : 2000-05-14
Classification:
37F10,
37-04,
37E99,
37F50
@article{1045952353,
author = {Briggs, Keith M. and \'Alvarez, Gonzalo},
title = {Scaling in a map of the two-torus},
journal = {Experiment. Math.},
volume = {9},
number = {3},
year = {2000},
pages = { 301-307},
language = {en},
url = {http://dml.mathdoc.fr/item/1045952353}
}
Briggs, Keith M.; Álvarez, Gonzalo. Scaling in a map of the two-torus. Experiment. Math., Tome 9 (2000) no. 3, pp. 301-307. http://gdmltest.u-ga.fr/item/1045952353/