Critical points of the Ginzburg-Landau functional on multiply-connected domains
Neuberger, J. W. ; Renka, R. J.
Experiment. Math., Tome 9 (2000) no. 3, p. 523-533 / Harvested from Project Euclid
We give a numerical method for approximating critical points of the Ginzburg-Landau functional, and present test results in the form of plots of the corresponding electron densities, magnetic fields, and currents. Our domains include a rectangle, a rectangle with a rectangular hole in the center, and a rectangle with two rectangular holes. In each case, we found several critical points. The plots reveal interesting patterns, including the existence of counter-currents (adjacent currents in opposite directions).
Publié le : 2000-10-14
Classification:  Ginzburg-Landau functional,  superconductivity,  Sobolev gradient,  35J50,  65K10,  81V99,  49M30
@article{1045759520,
     author = {Neuberger, J. W. and Renka, R. J.},
     title = {Critical points of the Ginzburg-Landau functional on multiply-connected domains},
     journal = {Experiment. Math.},
     volume = {9},
     number = {3},
     year = {2000},
     pages = { 523-533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1045759520}
}
Neuberger, J. W.; Renka, R. J. Critical points of the Ginzburg-Landau functional on multiply-connected domains. Experiment. Math., Tome 9 (2000) no. 3, pp.  523-533. http://gdmltest.u-ga.fr/item/1045759520/