Computing Hecke eigenvalues below the cohomological dimension
Gunnells, Paul E.
Experiment. Math., Tome 9 (2000) no. 3, p. 351-367 / Harvested from Project Euclid
Let $\funnyGamma$ be a torsion-free finite-index subgroup of $\SL_{n} (\Z )$ or $\GL_{n} (\Z )$, and let $\nu $ be the cohomological dimension of $\funnyGamma $. We present an algorithm to compute the eigenvalues of the Hecke operators on $H^{\nu -1} (\funnyGamma ;\Z )$, for n= 2, 3, and 4. In addition, we describe a modification of the modular symbol algorithm of Ash and Rudolph for computing Hecke eigenvalues on $H^{\nu } (\funnyGamma ;\Z )$.
Publié le : 2000-05-14
Classification:  Hecke operators,  cohomology of arithemetic groups,  modular symbols,  sharbly complex,  automorphic forms,  $LLL$-reduction,  Voronoi-reduction,  11F67,  11F75,  11H55,  11Y16
@article{1045604670,
     author = {Gunnells, Paul E.},
     title = {Computing Hecke eigenvalues below the cohomological dimension},
     journal = {Experiment. Math.},
     volume = {9},
     number = {3},
     year = {2000},
     pages = { 351-367},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1045604670}
}
Gunnells, Paul E. Computing Hecke eigenvalues below the cohomological dimension. Experiment. Math., Tome 9 (2000) no. 3, pp.  351-367. http://gdmltest.u-ga.fr/item/1045604670/