A Parabolic Quasilinear Problem for Linear Growth Functionals
Andreu, Fuensanta ; Caselles, Vincent ; Mazón, Joseé María
Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, p. 135-185 / Harvested from Project Euclid
We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth. A typical example of energy functional we consider is the one given by the nonparametric area integrand $f(x, \xi) = \sqrt{1 + \Vert \xi \Vert^2}$, which corresponds with the time-dependent minimal surface equation. We also study the asymptotic behaviour of the solutions.
Publié le : 2002-03-14
Classification:  Linear growth functionals,  nonlinear parabolic equations,  accretive operators,  nonlinear semigroups,  35K65,  35K55,  47H06,  47H20
@article{1045578696,
     author = {Andreu, Fuensanta and Caselles, Vincent and Maz\'on, Jose\'e Mar\'\i a},
     title = {A Parabolic Quasilinear Problem for Linear Growth Functionals},
     journal = {Rev. Mat. Iberoamericana},
     volume = {18},
     number = {1},
     year = {2002},
     pages = { 135-185},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1045578696}
}
Andreu, Fuensanta; Caselles, Vincent; Mazón, Joseé María. A Parabolic Quasilinear Problem for Linear Growth Functionals. Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, pp.  135-185. http://gdmltest.u-ga.fr/item/1045578696/