Tables for a statistical quality control test
Rublík, František ; Bognárová, Marta
Applications of Mathematics, Tome 37 (1992), p. 459-468 / Harvested from Czech Digital Mathematics Library

Critical constants for a test of the hypothesis that the mean $\mu$ and the standard deviation $\sigma$ of the normal $N(\mu,\sigma^2)$ population satisfy the constrains $\mu + c\sigma \leq M$, $\mu - c\sigma \geq m$, are presented. In this setup $m < M$ are prescribed tolerance limits and $c > 0$ in a chosen constant.

Publié le : 1992-01-01
Classification:  62F03,  62N10,  62P30,  62Q05
@article{104524,
     author = {Franti\v sek Rubl\'\i k and Marta Bogn\'arov\'a},
     title = {Tables for a statistical quality control test},
     journal = {Applications of Mathematics},
     volume = {37},
     year = {1992},
     pages = {459-468},
     zbl = {0783.62080},
     mrnumber = {1185801},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104524}
}
Rublík, František; Bognárová, Marta. Tables for a statistical quality control test. Applications of Mathematics, Tome 37 (1992) pp. 459-468. http://gdmltest.u-ga.fr/item/104524/

N. Johnson; F. Leone Statistics and Experimental Design, Wiley, New York, 1977. (1977) | Zbl 0397.62001

J. Likeš; J. Laga Fundamental Statistical Tables, SNTL, Prague, 1978. (In Czech.) (1978)

F. Rublík On the two-sided quality control, Aplikace matematiky 27 (1982), 87-95. (1982) | MR 0651047

F. Rublík Correction to the paper "On the two-sided quality control", Aplikace matematiky 34 (1989), 425-427. (1989) | MR 1026506

F. Rublík On testing hypotheses approximable by cones, Math. Slovaca 39 (1989), 199-213. (1989) | MR 1018261

F. Rublík Testing a tolerance hypothesis by means of an information distance, Aplikace matematiky 35 (1990), 458-470. (1990) | MR 1089926