Critical constants for a test of the hypothesis that the mean $\mu$ and the standard deviation $\sigma$ of the normal $N(\mu,\sigma^2)$ population satisfy the constrains $\mu + c\sigma \leq M$, $\mu - c\sigma \geq m$, are presented. In this setup $m < M$ are prescribed tolerance limits and $c > 0$ in a chosen constant.
@article{104524, author = {Franti\v sek Rubl\'\i k and Marta Bogn\'arov\'a}, title = {Tables for a statistical quality control test}, journal = {Applications of Mathematics}, volume = {37}, year = {1992}, pages = {459-468}, zbl = {0783.62080}, mrnumber = {1185801}, language = {en}, url = {http://dml.mathdoc.fr/item/104524} }
Rublík, František; Bognárová, Marta. Tables for a statistical quality control test. Applications of Mathematics, Tome 37 (1992) pp. 459-468. http://gdmltest.u-ga.fr/item/104524/
Statistics and Experimental Design, Wiley, New York, 1977. (1977) | Zbl 0397.62001
Fundamental Statistical Tables, SNTL, Prague, 1978. (In Czech.) (1978)
On the two-sided quality control, Aplikace matematiky 27 (1982), 87-95. (1982) | MR 0651047
Correction to the paper "On the two-sided quality control", Aplikace matematiky 34 (1989), 425-427. (1989) | MR 1026506
On testing hypotheses approximable by cones, Math. Slovaca 39 (1989), 199-213. (1989) | MR 1018261
Testing a tolerance hypothesis by means of an information distance, Aplikace matematiky 35 (1990), 458-470. (1990) | MR 1089926