Optimal oscillatory time for a class of second order nonlinear dissipative ODE
Herrmann, Leopold
Applications of Mathematics, Tome 37 (1992), p. 369-382 / Harvested from Czech Digital Mathematics Library

The oscillatorz properties of the equation $\ddot{u}+g(t,\dot{u}) + f(t,u)=0}$ are investigated. The result is applicable to some second order in time evolution equations.

Publié le : 1992-01-01
Classification:  34A34,  34C10,  34C15
@article{104517,
     author = {Leopold Herrmann},
     title = {Optimal oscillatory time for a class of second order nonlinear dissipative ODE},
     journal = {Applications of Mathematics},
     volume = {37},
     year = {1992},
     pages = {369-382},
     zbl = {0772.34030},
     mrnumber = {1175931},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104517}
}
Herrmann, Leopold. Optimal oscillatory time for a class of second order nonlinear dissipative ODE. Applications of Mathematics, Tome 37 (1992) pp. 369-382. http://gdmltest.u-ga.fr/item/104517/

Zuazua E. Oscillation properties for some damped hyperbolic problems, Houston J. Math. 16 (1990), 25-52. (1990) | MR 1071264