Recursive estimates of quantile based on 0-1 observations
Charamza, Pavel
Applications of Mathematics, Tome 37 (1992), p. 173-192 / Harvested from Czech Digital Mathematics Library

The objective of this paper is to introduce some recursive methods that can be used for estimating an $LD-50$ value. These methods can be used more generally for the estimation of the $\gamma$-quantile of an unknown distribution provided we have 0-1 observations at our disposal. Standard methods based on the Robbins-Monro procedure are introduced together with different approaches of Wu or Mukerjee. Several examples are also mentioned in order to demonstrate the usefulness of the methods presented.

Publié le : 1992-01-01
Classification:  62G05,  62L20,  62P10
@article{104502,
     author = {Pavel Charamza},
     title = {Recursive estimates of quantile based on 0-1 observations},
     journal = {Applications of Mathematics},
     volume = {37},
     year = {1992},
     pages = {173-192},
     zbl = {0764.62068},
     mrnumber = {1157454},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104502}
}
Charamza, Pavel. Recursive estimates of quantile based on 0-1 observations. Applications of Mathematics, Tome 37 (1992) pp. 173-192. http://gdmltest.u-ga.fr/item/104502/

Barlow R. E.; Bartholomew D. J.; Bremner J. M.; And Brunk H.D. Statistical Inference Under Order Restrictions, Wiley, London, 1972. (1972)

Blum J. R. Multidimensional stochastic approximation procedures, AMS 25 (1954), 737-744. (1954) | MR 0065092

Charamza P. Stochastic approximation on the lattice, Diploma work, Faculty of mathematics and physics, Charles University Prague, 1984. (In Czech.) (1984)

Charamza P. Software for stochastic approximation, Proceedings of the conference ROBUST 1990. (1990)

Derman C. Non-parametric up-and-down experimentation, AMS 28 (1957), 795-797. (1957) | MR 0090956 | Zbl 0084.14801

Dixon Mood A method for obtaining and analyzing sensitivity data, JASA 43 (1948), 109-126. (1948) | Article

Dupač V. Quasiisotonic regression and stochastic approximation, Metrika 34 (1987), 117-123. (1987) | Article | MR 0882505

Dupač V.; Henkenrath U. On integer stochastic approximation, Aplikace matematiky 29 (1984), 372-383. (1984) | MR 0772272

Fabián V. On asymptotic normality in stochastic approximation, AMS 39 (1968), 1327-1332. (1968) | MR 0231429

Holst U. Recursive estimation of quantiles, Contributions to probability and statistics in honor of Gunnar Blom, Univ. Lund, 1985, pp. 179-188. (1985) | MR 0795057 | Zbl 0575.62074

Lord P. M. Tailored testing. An application of stochastic approximation, Journal of the American Statistical Association 66 (1971), 707-711. (1971) | Article | Zbl 0257.62049

Mukerjee H. G. A stochastic approximation by observation on a discrete lattice using isotonic regression, AMS 9 (1981), 1020-1025. (1981) | MR 0628757

Nevelson M. B. On the properties of the recursive estimates for a functional of an unknown distribution function, Limit Theorems of Probability Theory (P. Revezs, eds.), Amsterodam, 1975, pp. 227-252. (1975) | MR 0395113

Robbins H.; Lai T. L. Adaptive design and stochastic approximation, AS 7 (1979), 1196-1221. (1979) | MR 0550144 | Zbl 0426.62059

Robbins H.; Lai T. L. Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes, Z. Wahrsch. Verw. Gebiete 56 (1981), 329-360. (1981) | Article | MR 0621117 | Zbl 0472.62089

Roth; Josífko; Malý; Trčka Statistical methods in experimental medicine, Státní. zdravotnické nakladatelství, Praha, 1962, pp. 592. (In Czech.) (1962)

Sacks J. Asymptotic distribution of stochastic approximation procedures, AMS 29 (1958), 373-405. (1958) | MR 0098427 | Zbl 0229.62010

Wu C.F. J. Efficient sequential designs with binary data, Journal of the American Statistical Association 80 (1985), 974-984. (1985) | Article | MR 0819603 | Zbl 0588.62133

Silvapulle M. J. On the existence of maximum likelihood estimators for the binomial response problem, Journal of the Royal Statistical Society, Ser. B 43 (1981), 310-313. (1981) | MR 0637943