The MINQUE of the linear function $\int'\vartheta$ of the unknown variance-components parameter $\vartheta$ in mixed linear model under linear restrictions of the type $\bold R\vartheta = c$ is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions $\vartheta_1 = k\vartheta_2$, where $k \geq 0$, is given.
@article{104497, author = {J\'ulia Volaufov\'a and Viktor Witkovsk\'y}, title = {Estimation of variance components in mixed linear models}, journal = {Applications of Mathematics}, volume = {37}, year = {1992}, pages = {139-148}, zbl = {0746.62066}, mrnumber = {1149163}, language = {en}, url = {http://dml.mathdoc.fr/item/104497} }
Volaufová, Júlia; Witkovský, Viktor. Estimation of variance components in mixed linear models. Applications of Mathematics, Tome 37 (1992) pp. 139-148. http://gdmltest.u-ga.fr/item/104497/
Estimation of variance and covariance components - MINQUE theory, Journal of Multivariate Analysis 1 (1971), 267-275. (1971) | MR 0301869 | Zbl 0223.62086
Estimation of Variance Components and Applications, volume 3 of Statistics and probability, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1988, first edition. (1988) | MR 0933559 | Zbl 0645.62073
Generalized Inverse of Matrices and Its Applications, John Wiley & Sons, New York, London, Sydney, Toronto, 1971, first edition. (1971) | MR 0338013 | Zbl 0236.15005
Linear spaces and unbiased estimation, Ann. Math. Stat. 41 (1970), 1725-1734. (1970) | MR 0275559 | Zbl 0263.62041
Practical aspects of variance component estimation, invited lecture for the 4th International Summer School on Problems of Model Choice and Parameter Estimation in Regression Analysis Mülhausen, GDR, May 1979. (1979)
On canonical forms, negative covariance matrices and best and simple least square estimator in linear models, Ann. Math. Stat. 38 (1967), 1092-1110. (1967) | MR 0214237