In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.
@article{104496, author = {Rudolf L. Voller}, title = {Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems}, journal = {Applications of Mathematics}, volume = {37}, year = {1992}, pages = {123-138}, zbl = {0754.65057}, mrnumber = {1149162}, language = {en}, url = {http://dml.mathdoc.fr/item/104496} }
Voller, Rudolf L. Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems. Applications of Mathematics, Tome 37 (1992) pp. 123-138. http://gdmltest.u-ga.fr/item/104496/
Monotone Regula-falsi-ähnliche Verfahren bei nichtkonvexen Operatorgleichungen, Beitr. Numer. Math. 8 (1980), 15-30. (1980) | MR 0564583 | Zbl 0425.65034
Monotonicity of Brown's Method, Z. Angew. Math. Mech. 68 (1988), 101-110. (1988) | Article | MR 0931771 | Zbl 0663.65047
A general monotone scheme for elliptic systems with applications to ecological models, Proc. Roy. Soc. Edinb. 102A (1986), 315-325. (1986)
Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. (1964) | MR 0181881
On the Dirichlet Problem for Elliptic Systems, Appl. Anal. 21 (1986), 207-224. (1986) | Article | MR 0840313 | Zbl 0593.35042
Iterative Solutions of Nonlinear Equations in Several Variables, Acad. Press, New York, 1970. (1970) | MR 0273810
Newton-like methods with monotone convergence for solving nonlinear operator equations, Nonl. Anal. Th., Meth. Appl. 11 (1987), 697-717. (1987) | MR 0893775 | Zbl 0633.65050
Monotone iterative methods for nonlinear operator equations, Numer. Funct. Anal. and Optimiz. 9 (1987), 809-843. (1987) | MR 0910856 | Zbl 0636.65056
On the monotone convergence of Newton's method, Computing 36 (1986), 81-90. (1986) | Article | MR 0832932 | Zbl 0572.65034
Monoton einschließende Verfahren bei additiv zerlegbaren Gleichungen, Z. Angew. Math. Mech. 63 (1983), 3-11. (1983) | MR 0701830 | Zbl 0519.65036
Enclosing methods in perturbated nonlinear operator equations, Comput. 32 (1984), 1-11. (1984) | MR 0736257
Monoton einschließende Newton-ähnliche Iterationsverfahren in halbgeordneten Räumen mit nicht notwendig regularem Kegel, Dissertation, Düsseldorf 1982. (1982)
Iterative Einschließung von Lösungen nichtlinearer Differentialgleichungen durch Newton-ähnliche Iterationsverfahren, Apl. Mat. 31 (1986), 1-18. (1986) | MR 0836798
Ein neues Verfahren zur Einschließung der Lösungen von Operatorgleichungen, Z. Angew. Math. Mech. 56 (1976), 218-219. (1976) | Article | MR 0408240 | Zbl 0341.65040