An optimal control problem for a pseudoparabolic variational inequality
Bock, Igor ; Lovíšek, Ján
Applications of Mathematics, Tome 37 (1992), p. 62-80 / Harvested from Czech Digital Mathematics Library

We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.

Publié le : 1992-01-01
Classification:  47H19,  49A29,  49A34,  49J40,  73F15,  73K10,  73V25,  73k40,  74Hxx
@article{104492,
     author = {Igor Bock and J\'an Lov\'\i \v sek},
     title = {An optimal control problem for a pseudoparabolic variational inequality},
     journal = {Applications of Mathematics},
     volume = {37},
     year = {1992},
     pages = {62-80},
     zbl = {0772.49008},
     mrnumber = {1152158},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104492}
}
Bock, Igor; Lovíšek, Ján. An optimal control problem for a pseudoparabolic variational inequality. Applications of Mathematics, Tome 37 (1992) pp. 62-80. http://gdmltest.u-ga.fr/item/104492/

V. Barbu Optimal control of variational inequalities, Pitman, Boston, 1984. (1984) | MR 0742624 | Zbl 0574.49005

V. Barbu T. Precupanu Convexity and optimization, Sitjhoff-Noordhoff, Amsterdam, 1978. (1978)

I. Bock J. Lovíšek Optimal control of a viscoelastic plate bending, Mathematische Nachrichten 125 (1968), 135-151. (1968) | MR 0847355

I. Bock J. Lovíšek Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints, Aplikace matematiky 32 no. 4 (1987), 301-314. (1987) | MR 0897834

H. Brézis Problémes unilatéraux, Journal de Math. Pures. et Appl. 51 (1972), 1-168. (1972) | MR 0428137

H. Brézis Operateurs maximaux monotones et semigroupes, North Holland, Amsterdam, 1973. (1973)

H. Brézis Analyse fonctionelle, Masson, Paris, 1982. (1982)

J. Brilla Linear viscoelastic plate bending analysis, Proc. XI-th Congress of applied mechanics, München, 1964. (1964)

E. Di Benedetto R.E.Showalter A pseudoparabolic variational inequality and Stefan problem, Nonlinear analysis 6 (1982), 279-291. (1982) | Article | MR 0654319

H. Gajewski K. Gröner K. Zacharias Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin, 1974. (1974) | MR 0636412

D. Kinderlehrer G. Stampacchia An introduction to variational inequalities, Academic Press, New York, 1980. (1980) | MR 0567696

K. L. Kuttler, Jr. Degenerate variational inequalities of evolution, Nonlinear analysis 8 (1984), 837-850. (1984) | Article | MR 0753762 | Zbl 0549.49004

J. L. Lions Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) | MR 0259693 | Zbl 0189.40603

U. Mosco Convergence of convex sets of solutions of variational inequalities, Advances of Math. 3 (1969), 510-585. (1969) | Article | MR 0298508

O. R. Ržanicyn Teoria polzučesti, Strojizdat, Moskva, 1968. (1968)

L. W. White Control problems governed by pseudoparabolic partial differential equations, Trans. Amer. Math. Soc. 250 (1979), 235-246. (1979) | Article | MR 0530053

L. W. White Controlability properties of pseudoparabolic boundary value problems, SIAM J. of Control and Optim. 18 no. 5 (1980), 534-539. (1980) | Article | MR 0586169