A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
@article{104483, author = {Ivan Hlav\'a\v cek}, title = {Shape optimization of elasto-plastic axisymmetric bodies}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {469-491}, zbl = {0756.73094}, mrnumber = {1134923}, language = {en}, url = {http://dml.mathdoc.fr/item/104483} }
Hlaváček, Ivan. Shape optimization of elasto-plastic axisymmetric bodies. Applications of Mathematics, Tome 36 (1991) pp. 469-491. http://gdmltest.u-ga.fr/item/104483/
Les inéquations en mécanique et en physique, Paris, Dunod 1972. (1972) | MR 0464857
Error estimates for elasto-plastic problems, R.A.I.R.O. Anal. Numér. 11 (1977), 135-144. (1977) | MR 0449119
Shape optimization of elasto-plastic bodies obeying Hencky's law, Apl. Mat. 31 (1986), 486-499. (1986) | MR 0870484 | Zbl 0616.73081
Domain optimization of axisymmetric elliptic boundary value problems by finite elements, Apl. Mat. 33 (1988), 213-244. (1988) | MR 0944785
Shape optimization of elastic axisymmetric bodies, Apl. Mat. 34 (1989), 225- -245. (1989) | MR 0996898
Dual finite element analysis of 3D-axisymmetric elliptic problems, Numer. Anal. Part. Diff. Eqs. (To appear.)
On the numerical solution of axisymmetric domain optimization problems, Appl. Math. 36 (1991), 284-304. (1991) | MR 1113952
Resolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en $\theta$, R.A.I.R.O. Anal. numér. 16 (1982), 405-461. (1982) | MR 0684832
Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1983. (1983) | MR 0725856