Global weak solvability to the regularized viscous compressible heat conductive flow
Neustupa, Jiří ; Novotný, Antonín
Applications of Mathematics, Tome 36 (1991), p. 417-431 / Harvested from Czech Digital Mathematics Library

The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.

Publié le : 1991-01-01
Classification:  35Q30,  76N10
@article{104479,
     author = {Ji\v r\'\i\ Neustupa and Anton\'\i n Novotn\'y},
     title = {Global weak solvability to the regularized viscous compressible heat conductive flow},
     journal = {Applications of Mathematics},
     volume = {36},
     year = {1991},
     pages = {417-431},
     zbl = {0742.76063},
     mrnumber = {1134919},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104479}
}
Neustupa, Jiří; Novotný, Antonín. Global weak solvability to the regularized viscous compressible heat conductive flow. Applications of Mathematics, Tome 36 (1991) pp. 417-431. http://gdmltest.u-ga.fr/item/104479/

S. Agmon A. Douglis L. Nirenberg Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92. (1964) | MR 0162050

A. Friedman Partial differential equations of parabolic type, Prentice-Hall, INC (1964). (1964) | MR 0181836 | Zbl 0144.34903

A. Kufner O. John S. Fučík Function spaces, Praha, Academia (1977). (1977) | MR 0482102

O. A. Ladzhenskaya V. A. Solonnikov N. N. Uralceva Linear and quasilinear equations of parabolic type, (Russian). Moskva, Nauka (1967). (1967)

J. L. Lions Quelques méthodes des résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). (1969) | MR 0259693

A. Matsumura T. Nishida Initial boundary value problems for the equation of motion of compressible viscous and heat conductive fluids, Comm. Math. Phys. 89 (1983), 445 - 464. (1983) | MR 0713680

A. Matsumura T. Nishida The initial value problem for the equations of motion of viscous and heat conductive gasses, J. Math. Kyoto Univ. 20 (1980), 67-104. (1980) | MR 0564670

S. Mizohata Theory of partial differential equations, (Russian). Moskva, Mir (1977). (1977)

J. Nečas A. Novotný M. Šilhavý Global solution to the compressible isothermal multipolar fluid, to appear J. Math. Anal. Appl. (1991). (1991) | MR 1135273

J. Nečas M. Šilhavý Multipolar viscous fluids, to appear Quart. Appl. Math. | MR 1106391

J. Neustupa The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid, Apl. Mat. 33 (1988), 389-409. (1988) | MR 0961316

J. Neustupa A. Novotný Uniqueness to the regularized viscous compressible heat conductive flow, to appear.

M. Padula Existence of global solutions for 2-dimensional viscous compressible flow, J. Funct. Anal. 69 (1986), 1-20. (1986) | Article | MR 0864756

R. Rautman The uniqueness and regularity of the solutions of Navier-Stokes problems, Lecture Notes in Math. Vol. 561, Springer-Verlag (1976). (1976) | MR 0463727

A. Tani On the first initial boundary value problem of compressible viscous fluid, Publ. RIMS Kyoto Univ. 13 (1977), 193 - 253. (1977) | Article | Zbl 0366.35070

R. Temam Navier-Stokes equations, Amsterdam-New York-Oxford (1979). (1979) | Zbl 0454.35073

A. Valli An existence theorem for compressible viscous fluids, Ann. Mat. Рurа Appl. 130 (1982), 197-213. (1982) | Article | MR 0663971 | Zbl 0599.76082