The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.
@article{104479, author = {Ji\v r\'\i\ Neustupa and Anton\'\i n Novotn\'y}, title = {Global weak solvability to the regularized viscous compressible heat conductive flow}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {417-431}, zbl = {0742.76063}, mrnumber = {1134919}, language = {en}, url = {http://dml.mathdoc.fr/item/104479} }
Neustupa, Jiří; Novotný, Antonín. Global weak solvability to the regularized viscous compressible heat conductive flow. Applications of Mathematics, Tome 36 (1991) pp. 417-431. http://gdmltest.u-ga.fr/item/104479/
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92. (1964) | MR 0162050
Partial differential equations of parabolic type, Prentice-Hall, INC (1964). (1964) | MR 0181836 | Zbl 0144.34903
Function spaces, Praha, Academia (1977). (1977) | MR 0482102
Linear and quasilinear equations of parabolic type, (Russian). Moskva, Nauka (1967). (1967)
Quelques méthodes des résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). (1969) | MR 0259693
Initial boundary value problems for the equation of motion of compressible viscous and heat conductive fluids, Comm. Math. Phys. 89 (1983), 445 - 464. (1983) | MR 0713680
The initial value problem for the equations of motion of viscous and heat conductive gasses, J. Math. Kyoto Univ. 20 (1980), 67-104. (1980) | MR 0564670
Theory of partial differential equations, (Russian). Moskva, Mir (1977). (1977)
Global solution to the compressible isothermal multipolar fluid, to appear J. Math. Anal. Appl. (1991). (1991) | MR 1135273
Multipolar viscous fluids, to appear Quart. Appl. Math. | MR 1106391
The global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid, Apl. Mat. 33 (1988), 389-409. (1988) | MR 0961316
Uniqueness to the regularized viscous compressible heat conductive flow, to appear.
Existence of global solutions for 2-dimensional viscous compressible flow, J. Funct. Anal. 69 (1986), 1-20. (1986) | Article | MR 0864756
The uniqueness and regularity of the solutions of Navier-Stokes problems, Lecture Notes in Math. Vol. 561, Springer-Verlag (1976). (1976) | MR 0463727
On the first initial boundary value problem of compressible viscous fluid, Publ. RIMS Kyoto Univ. 13 (1977), 193 - 253. (1977) | Article | Zbl 0366.35070
Navier-Stokes equations, Amsterdam-New York-Oxford (1979). (1979) | Zbl 0454.35073
An existence theorem for compressible viscous fluids, Ann. Mat. Рurа Appl. 130 (1982), 197-213. (1982) | Article | MR 0663971 | Zbl 0599.76082