Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.
@article{104473, author = {J\'ulius Cibula}, title = {Von K\'arm\'an equations. III. Solvability of the von K\'arm\'an equations with conditions for geometry of the boundary of the domain}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {368-379}, zbl = {0754.73035}, mrnumber = {1125638}, language = {en}, url = {http://dml.mathdoc.fr/item/104473} }
Cibula, Július. Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain. Applications of Mathematics, Tome 36 (1991) pp. 368-379. http://gdmltest.u-ga.fr/item/104473/
Equations de von Kármán. I. Résultat d'existence pour les problèmes aux limites non homogènes, Aplikace matematiky, 29 (1984), 317-332. (1984) | MR 0772267 | Zbl 0575.35034
Equations de von Kármán. II. Approximation de la solution, Aplikace matematiky, 30(1985), 1-10. (1985) | MR 0779329 | Zbl 0606.35031
Optimisation, théorie et algoritmes, Dunod, Paris 1971. (1971) | MR 0298892
Lés équations de von Kármán, Lecture Notes in Math., vol. 826. Springer-Verlag, Berlin-Heidelberg-New York 1980. (1980) | MR 0595326
Inhomogeneous boundary value problems for the von Kármán equation, I, Aplikace matematiky 19 (1974), 253-269. (1974) | MR 0377307
On the solvability of von Kármán equations, Aplikace matematiky, 20 (1975), 48-62. (1975) | MR 0380099
An existence theorem for the von Kármán equations, Arch. Rat. Mech. Anal., 27 (1967), 233-242. (1967) | Article | MR 0220472 | Zbl 0162.56303
Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) | MR 0227584