A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation $-\epsilon u^n + pu' + qu=f$ are presented and analyzed theoretically. The positive number $\epsilon$ is supposed to be much less than the discretization step and the values of $\left|p\right|,q$. An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.
@article{104471, author = {Josef Dal\'\i k}, title = {A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {329-354}, zbl = {0748.65061}, mrnumber = {1125636}, language = {en}, url = {http://dml.mathdoc.fr/item/104471} }
Dalík, Josef. A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems. Applications of Mathematics, Tome 36 (1991) pp. 329-354. http://gdmltest.u-ga.fr/item/104471/
Application and implementation of finite element methods, Academic Press, London, New York, 1982. (1982) | MR 0693291 | Zbl 0535.73063
The mathematics of finite elements and applications IV, Academic Press, London, New York (1982), 403-411. (1982)
An asymptotic finite element method for improvement of solutions of boundary layer problems, Numer. Math. Vol. 49, 4 (1986), 425-438. (1986) | Article | MR 0853664
New monotone type approximations for elliptic problems, Math. Соmр. 18 (1964), 349-367. (1964) | MR 0165702
Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Math. in Appl. Mech. and Eng. 32 (1982), 199-259. (1982) | Article | MR 0679322
The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. (1978) | MR 0520174 | Zbl 0383.65058
An apriori error estimate of an approximation of a two-point boundary value problem by the Petrov-Galerkin method, (Czech). Knižnice obd. a věd. spisů VUT Brno, Sv. A-35 (1988), 19-28. (1988) | MR 0960239
Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980. (1980) | MR 0610605
Numerical nethods for nonlinear variational problems. Appendix II, Springer- -Verlag, New York, Berlin, 1984. (1984) | MR 0737005
Defect correction for the solution of a singular perturbation problem, (preprint). Math. centrum, 1982. (1982) | MR 0685785
Numerical aspects of singular perturbation problems, (preprint). Math. centrum, Amsterdam, 1982. (1982) | MR 0708292
Maximum principle in finite element models for convection-diffusion phenomena, North-Holland, Amsterdam, New York, Oxford, 1983. (1983)
Analysis of some finite element methods for advection-diffusion problems, (research report). Chalmers Univ. of Techn., Goteborg, 1980. (1980) | MR 0605502
Finite elements method for linear hyperbolic problems, (research report). Chalmers Univ. of Techn., Göteborg, 1982. (1982)
A finite element method for convection-diffusion problems, (thesis). Chalmers Univ. of Techn., Göteborg, 1982. (1982)
The streamline diffusion method for timedependent convection-diffusion problems with small diffusion, (research report). Chalmers Univ. of Techn., Göteborg, 1981. (1981)
Singularly perturbed finite element methods, Numer. Math. Vol. 44, 3 (1984), 425-434. (1984) | Article | MR 0757497 | Zbl 0569.65065
Skew upstream differencing schemes for problems involving fluid flow, Comp. Meth. Appl. Mech. Eng. Vol 9 (1976), 153-164. (1976) | Article | MR 0443576 | Zbl 0347.76066
Les méthodes d'élements finis en mécanique des fluides II, 3. Edditions Eyrolles, Paris, 1981. (1981) | MR 0631851