Hysteresis memory preserving operators
Krejčí, Pavel
Applications of Mathematics, Tome 36 (1991), p. 305-326 / Harvested from Czech Digital Mathematics Library

The recent development of mathematical methods of investigation of problems with hysteresis has shown that the structure of the hysteresis memory plays a substantial role. In this paper we characterize the hysteresis operators which exhibit a memory effect of the Preisach type (memory preserving operators). We investigate their properties (continuity, invertibility) and we establish some relations between special classes of such operators (Preisach, Ishlinskii and Nemytskii operators). For a general memory preserving operator we derive an energy inequality.

Publié le : 1991-01-01
Classification:  35R45,  47H30,  58C07,  58D25,  58D30
@article{104468,
     author = {Pavel Krej\v c\'\i },
     title = {Hysteresis memory preserving operators},
     journal = {Applications of Mathematics},
     volume = {36},
     year = {1991},
     pages = {305-326},
     zbl = {0756.47053},
     mrnumber = {1113953},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104468}
}
Krejčí, Pavel. Hysteresis memory preserving operators. Applications of Mathematics, Tome 36 (1991) pp. 305-326. http://gdmltest.u-ga.fr/item/104468/

M. Brokate On a characterization of the Preisach model for hysteresis, Bericht Nr. 35, Universität Kaiserslautern, 1989. (1989) | MR 1066436

M. Brokate A. Visintin Properties of the Preisach model for hysteresis, J. reine angen. Math. 402 (1989) 1-40. (1989) | MR 1022792

E. Della Torre J. Oti G. Kádár Preisach modelling and reversible magnetization, Preprint.

M. Hilpert On uniqueness for evolution problems with hysteresis, Report No. 119, Universität Augsburg, 1989. (1989) | MR 1038080 | Zbl 0701.35009

M. A. Krasnoselskii A. V. Pokrovskii Systems with hysteresis, (Russian). Moscow, Nauka, 1983. (1983) | MR 0742931

P. Krejčí Hysteresis and periodic solutions to semilinear and quasilinear wave equations, Math. Z. 193 (1986), 247-264. (193 ) | Article | MR 0856153

P. Krejčí On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat. 34 (1989), 364-374. (1989) | MR 1014077

P. Krejčí Hysteresis operators - a new approach to evolution differential inequalities, Comment. Math. Univ. Carolinae, 30, 3 (1989), 525-536. (1989) | MR 1031870

D. Mayergoyz Mathematical models for hysteresis, Phys. Rev. Letters 56 (1986), 1518-1529. (1986)