An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.
@article{104467, author = {Ivan Hlav\'a\v cek and Raino M\"akinen}, title = {On the numerical solution of axisymmetric domain optimization problems}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {284-304}, zbl = {0745.65044}, mrnumber = {1113952}, language = {en}, url = {http://dml.mathdoc.fr/item/104467} }
Hlaváček, Ivan; Mäkinen, Raino. On the numerical solution of axisymmetric domain optimization problems. Applications of Mathematics, Tome 36 (1991) pp. 284-304. http://gdmltest.u-ga.fr/item/104467/
Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal, Appl. Math. & Optim. 2 (1975), 130-169. (1975) | MR 0443372
Geometric Sensitivity Analysis with Isoparametric Finite Elements, Commun. appl. numer. methods, 3 (1987), 495-499. (1987) | Zbl 0623.73081
User's Guide for NPSOL, Technical Report SOL 84-7, Stanford University (1984). (1984)
Optimization of the Shape of Axisymmetric Shells, Apl. Mat. 28 (1983), 269-294. (1983) | MR 0710176
Domain Optimization in Axisymmetric Elliptic Boundary Value Problems by Finite Elements, Apl. Mat. 33 (1988), 213-244. (1988) | MR 0944785
Shape Optimization of Elastic Axisymmetric Bodies, Apl. Mat. 34 (1989), 225-245. (1989) | MR 0996898
Domain Optimization in 3D-axisymmetric Elliptic Problems by Dual Finite Element Method, Apl. Mat. 35 (1990), 225-236. (1990) | MR 1052744
Finite Element Design Sensitivity Analysis for Nonlinear Potential Problems, Submitted for publication in Commun. appl. numer. methods. | MR 1062294