Asymptotic normality of eigenvalues of random ordinary differential operators
Hála, Martin
Applications of Mathematics, Tome 36 (1991), p. 264-276 / Harvested from Czech Digital Mathematics Library

Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.

Publié le : 1991-01-01
Classification:  34B05,  34F05,  34L10,  34L40,  60H25,  73H05
@article{104465,
     author = {Martin H\'ala},
     title = {Asymptotic normality of eigenvalues of random ordinary differential operators},
     journal = {Applications of Mathematics},
     volume = {36},
     year = {1991},
     pages = {264-276},
     zbl = {0737.60056},
     mrnumber = {1113950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104465}
}
Hála, Martin. Asymptotic normality of eigenvalues of random ordinary differential operators. Applications of Mathematics, Tome 36 (1991) pp. 264-276. http://gdmltest.u-ga.fr/item/104465/

C. B. Biezeno R. Grammel Technische Dynamik, Springer-Verlag, Berlin, 1939. (1939)

L. Collatz Eigenwertaufgaben mit technischen Anwendungen, Geest & Portig, Leipzig, 1963. (1963) | MR 0152101

T. Kato Perturbation theory, (Russian). Mir, Moskva, 1972. (1972) | Zbl 0247.47009

V. Lánská The process from representation by means of spectral density to the representation by means of stochastic differential equations, ÚTIA-ČSAV, Prague, 1981 (Research Report No. 1094 - in Czech). (1981)

P. Mandl Stochastic Dynamic Models, Academia, Prague, 1985 (in Czech). (1985) | MR 0819740

H. P. Mc Kean, Jr. Stochastic Integrals, Academic Press, New York-London, 1969. (1969) | MR 0247684

F. Rellich Störungsrechnung der Spektralzerlegung - I. Mitteilung, Math. Ann. 113 (1937), 600-619. (1937) | MR 1513109

F. Rellich Störungsrechnung der Spektralzerlegung - II. Mitteilung, Math. Ann. 113 (1937), 685-698. (1937)

F. Rellich Störungsrechnung der Spektralzerlegung - III. Mitteilung, Math. Ann. 116 (1939), 555-570. (1939) | MR 1513244

F. Rellich Störungsrechnung der Spektralzerlegung - IV. Mitteilung, Math. Ann, 117 (1940), 356-382. (1940) | MR 0002715

J. A. Rozanov Stationary stochastic processes, (Russian). Fizmatgiz, Moskva, 1963. (1963) | MR 0159363

J. V. Scheidt W. Purkert Random Eigenvalue Problems, Akademie-Verlag, Berlin, 1983. (1983) | MR 0790850

M. Šikulová The distribution of natural frequencies of some basic supporting engineering structures made of reinforced concrete, VUT Brno, 1987 (dissertation - in Czech). (1987)