A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain.
@article{104457, author = {Ji\v r\'\i\ Jaru\v sek}, title = {On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes. II}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {161-180}, zbl = {0771.73008}, mrnumber = {1109122}, language = {en}, url = {http://dml.mathdoc.fr/item/104457} }
Jarušek, Jiří. On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes. II. Applications of Mathematics, Tome 36 (1991) pp. 161-180. http://gdmltest.u-ga.fr/item/104457/
Integral Transformations of Functions and Imbedding Theorems, (in Russian). Nauka, Moskva 1975. (1975)
Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Math. 24, Pitman, Ibston - London - Melbourne 1985. (1985) | MR 0775683 | Zbl 0695.35060
Problèmes aux limites dans les polygones. Mode d'emploi, EDF Bull. Direct. Etud. Rech. Ser. C - Math. Inform. (1986), 21-59. (1986) | MR 0840970 | Zbl 0623.35031
Contact problems with bounded friction. Coercive case, Czech. Math. J. 33 (108) (1983), 237-261. (1983) | MR 0699024
On the regularity of solutions of a thermoelastic system under noncontinuous heating regime, Apl. Mat. 35 (1990) 6, 426-450. (1990) | MR 1089924
Elliptic boundary value problems with conical or angular points, (in Russian). Trudy Mosk. Mat. Obšč., Vol. 16 (1967), 209-292. (1967) | MR 0226187
Some Applications of Weighted Sobolev Spaces, Teubner-Texte Math. Vol. 100, Teubner V., Leipzig 1987. (1987) | MR 0926688
Linear and Quasilinear Equations of Parabolic Type, (in Russian), Nauka, Moskva 1967. (1967)
Problèrnes aux limites non-homogènes et applications, Dunod, Paris 1968. (1968)
On the coefficients in asymptotics of solutions of elliptic boundary value problems in domains having conical points, (in Russian), Math. Nachr.76 (1977), 29-60. (1977) | MR 0601608
The regularity of boundary value problems for the Lamé equation in polygonal domain, Rostock Math. Kolloq. 36 (1989), 21 - 50. (1989)
Sur le problème de Stefan avec flux non-linéaire, Preprint No 230, Ist. Anal. Numer, C. N. R. Pavia, Pavia 1981. (1981) | MR 0631569 | Zbl 0478.35084