In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some $L^\infty$ error estimates for finite element methods for parabolic integro-differential equations.
@article{104449, author = {Yan Ping Lin and Tie Zhu Zhang}, title = {The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type}, journal = {Applications of Mathematics}, volume = {36}, year = {1991}, pages = {123-133}, zbl = {0732.65122}, mrnumber = {1097696}, language = {en}, url = {http://dml.mathdoc.fr/item/104449} }
Lin, Yan Ping; Zhang, Tie Zhu. The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type. Applications of Mathematics, Tome 36 (1991) pp. 123-133. http://gdmltest.u-ga.fr/item/104449/
Non-classical $H^1$ projection and Galerkin methods for nonlinear parabolic integro-differential equations, Calcolo, 25 (1988) 187- 201, (1988) | Article | MR 1053754
A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory, SJAM. J. Numer. Anal., 27 (1990) 595-607. (1990) | MR 1041253
The Finite Element Method for Elliptic Problems, North Holland, 1978. (1978) | MR 0520174 | Zbl 0383.65058
Finite element methods for parabolic and hyperbolic partial integro-differential equations, to appear in Nonlinear Analysis. | MR 0954953
Numerical solution of semilinear integro-differential equations of parabolic type, SIAM J. Numer. Anal., 26 (1989) 1291-1309. (1989) | MR 1025089
A Ritz-Volterra projection onto finite element spaces and application to integro and related equations, to appear in SIAM J. Numer. Anal. | MR 1111453
Maximum norm estimate, extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulalion, J. Соmр. Math., Vol. 1, No. 4 (1983) 376-383. (1983) | MR 0726394
Superconvergence Theory of Finite Element Methods, Book to appear.
$L_{\infty}$-convergence of finite element Galerkin approximations for parabolic problems, R.A.I.R.O., Vol. 13, No. 1, (1979) 31-51. (1979) | MR 0527037 | Zbl 0401.65069
Some optimal error estimates for piecewise linear finite element approximations, Math. Соmр. 38 (1982) 437-445. (1982) | MR 0645661
Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pur. Appl. Math., XXXIII, (1980) 265-304. (1980) | MR 0562737
Optimal $L^{\infty}$ estimates for the finite element on irregular meshes, Math. Соmр., 30 (1976) 681-697. (1976) | MR 0436617 | Zbl 0349.65060
Error estimates for semi-discrete finite element methods for parabolic integro-differential equations, Math. Соmр., 53 (1989) 121-139. (1989) | MR 0969493
A priori $L_2$ error estimates for Galerkin methods to parabolic partial differential equations, SIAM J. Numer. Anal. 19 (1973) 723-759. (1973) | MR 0351124