Testing a tolerance hypothesis by means of an information distance
Rublík, František
Applications of Mathematics, Tome 35 (1990), p. 458-470 / Harvested from Czech Digital Mathematics Library

In the paper a test of the hypothesis $\mu+c \sigma \leq M$, $\mu - c \sigma \geq m$ on parameters of the normal distribution is presented, and explicit formulas for critical regions are derived for finite sample sizes. Asymptotic null distribution of the test statistic is investigated under the assumption, that the true distribution possesses the fourth moment.

Publié le : 1990-01-01
Classification:  62E20,  62F03,  62F05
@article{104428,
     author = {Franti\v sek Rubl\'\i k},
     title = {Testing a tolerance hypothesis by means of an information distance},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {458-470},
     zbl = {0727.62027},
     mrnumber = {1089926},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104428}
}
Rublík, František. Testing a tolerance hypothesis by means of an information distance. Applications of Mathematics, Tome 35 (1990) pp. 458-470. http://gdmltest.u-ga.fr/item/104428/

J. Anděl Matematická statistika, Praha, SNTL 1978. (1978)

H. Cramér Mathematical Methods of Statistics, Princeton University Press 1946. (1946) | MR 0016588

C. R. Rao Linear Statistical Inference and Its Applications, (Czech translation). Praha, Academia 1978. (1978)

F. Rublík On testing hypotheses approximable by cones, Math. Slovaca 39 (1989), 199-213. (1989) | MR 1018261

F. Rublík On the two-sided quality control, Apl. Mat. 27 (1982), 87-95. (1982) | MR 0651047

F. Rublík Correction to the paper "On the two-sided quality control", Apl. Mat. 34 (1989), 425-428. (1989) | MR 1026506