A second order elliptic problem with axisymmetric data is solved in a finite element space, constructed on a triangulation with curved triangles, in such a way, that the (nonhomogeneous) boundary condition is fulfilled in the sense of a penalty. On the basis of two approximate solutions, extrapolates for both the solution and the boundary flux are defined. Some a priori error estimates are derived, provided the exact solution is regular enough. The paper extends some of the results of J.T. King [6], [7].
@article{104420, author = {Ivan Hlav\'a\v cek}, title = {Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions}, journal = {Applications of Mathematics}, volume = {35}, year = {1990}, pages = {405-417}, zbl = {0725.65098}, mrnumber = {1072609}, language = {en}, url = {http://dml.mathdoc.fr/item/104420} }
Hlaváček, Ivan. Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions. Applications of Mathematics, Tome 35 (1990) pp. 405-417. http://gdmltest.u-ga.fr/item/104420/
The finite element method with penalty, Math. Соmр. 27, (1973), 221 - 228. (1973) | MR 0351118
Semidiscrete-least squares methods for a parabolic boundary value problem, Math. Соmр. 26 (1972), 633-648. (1972) | MR 0349038
Design sensitivity analysis of structural systems, Academic Press, London 1986. (1986) | MR 0860040
Dual finite element analysis of 3D-axisymmetric elliptic problems, (To appear).
Domain optimization in axisymmetric elliptic boundary value problems by finite elements, Apl. Mat. 33 (1988), 213-244. (1988) | MR 0944785
New error bounds for the penalty method and extrapolation, Numer. Math. 23, (1974), 153-165. (1974) | Article | MR 0400742 | Zbl 0272.65092
Boundary flux estimates for elliptic problems by the perturbed variational method, Computing 16 (1976), 339-347. (1976) | Article | MR 0418485
Les methodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) | MR 0227584
Resolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en $\theta$, RAIRO, Anal. numér. 16 (1982), 405-461. (1982) | MR 0684832
Curved elements in the finite element method, SfAM Numer. Anal. 10, (1973), 229-240. (1973) | Article | MR 0395263