Shape optimization of an elasto-plastic body for the model with strain- hardening
Pištora, Vladislav
Applications of Mathematics, Tome 35 (1990), p. 373-404 / Harvested from Czech Digital Mathematics Library

The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences in time are used. Existence and uniqueness of a solution of the approximate state problem and existence of a solution of the approximate optimal design problem are proved. The main result is the proof of convergence of the approximations to a solution of the original optimal design problem.

Publié le : 1990-01-01
Classification:  49J40,  65K10,  65N30,  73E05,  73E99,  73V25,  73k40,  74P10,  74P99,  74S05,  74S30
@article{104419,
     author = {Vladislav Pi\v stora},
     title = {Shape optimization of an elasto-plastic body for the model with strain- hardening},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {373-404},
     zbl = {0717.73054},
     mrnumber = {1072608},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104419}
}
Pištora, Vladislav. Shape optimization of an elasto-plastic body for the model with strain- hardening. Applications of Mathematics, Tome 35 (1990) pp. 373-404. http://gdmltest.u-ga.fr/item/104419/

D. Begis R. Glowinski Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal, Appl. Math. Optim. 2 (1975), 130-169. (1975) | Article | MR 0443372

J. Céa: Optimization Théorie et algorithmes, Dunod, Paris, 1971; (in Russian, Mir, Moskva, 1973). (1971) | MR 0298892

P. G. Ciarlet The finite element method for elliptic problems, North Holland Publ. Соmр., Amsterdam, 1978; (in Russian, Mir, Moskva, 1980). (1978) | MR 0608971 | Zbl 0383.65058

I. Hlaváček A finite element solution for plasticity with strain-hardening, RAIRO Annal. Numér. 14 (1980), 347-368. (1980) | MR 0596540

I. Hlaváček Optimization of the domain in elliptic problems by the dual finite element method, Apl. Mat. 30 (1985), 50-72. (1985) | MR 0779332

I. Hlaváček Shape optimization of an elastic-perfectly plastic body, Apl. Mat. 32 (1987), 381-400. (1987) | MR 0909545

C. Johnson Existence theorems for plasticity problems, J. Math. Pures Appl. 55 (1976), 431-444. (1976) | MR 0438867 | Zbl 0351.73049

C. Johnson A mixed finite element method for plasticity with hardening, SIAM J. Numer. Anal. 14 (1977), 575-583. (1977) | Article | MR 0489265

C. Johnson On plasticity with hardening, J. Math. Anal. Appl. 62 (1978), 325-336. (1978) | Article | MR 0489198 | Zbl 0373.73049

A. Kufner O. John S. Fučík Function spaces, Academia, Praha, 1977. (1977) | MR 0482102

J. Nečas Les méthodes directes en théorie des équations elliptiques, Academia, Praha, 1967. (1967) | MR 0227584

I. Hlaváček Shape optimization of elasto-plastic bodies obeying Hencky's law, Apl. Mat. 31 (1986), 486-499. (1986) | MR 0870484 | Zbl 0616.73081

I. Hlaváček J. Haslinger J. Nečas J. Lovíšek Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988. (1988) | MR 0952855