On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
Šeda, Valter ; Pekár, Ján
Applications of Mathematics, Tome 35 (1990), p. 315-336 / Harvested from Czech Digital Mathematics Library

In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$.

Publié le : 1990-01-01
Classification:  34A12,  34C10,  34D05,  34E99,  35Q40
@article{104413,
     author = {Valter \v Seda and J\'an Pek\'ar},
     title = {On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {315-336},
     zbl = {0719.34058},
     mrnumber = {1065005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104413}
}
Šeda, Valter; Pekár, Ján. On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$. Applications of Mathematics, Tome 35 (1990) pp. 315-336. http://gdmltest.u-ga.fr/item/104413/

Ch. V. Coffman Uniqueness of the ground state solution for $\Delta u - u +u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 81 - 95. (1972) | Article | MR 0333489

L. Erbe K. Schmitt On radial solutions of some semilinear elliptic equations, Differential and Integral Equations, Vol. 1 (1988), 71 - 78. (1988) | MR 0920490

J. Chauvette F. Stenger The approximate solution of the nonlinear equation $\Delta u = u - u^3$, J. Math. Anal. Appl. 51 (1975), 229-242. (1975) | Article | MR 0373320

G. H. Ryder Boundary value problems for a class of nonlinear differential equations, Pacific J. Math. 22 (1967), 477-503. (1967) | Article | MR 0219794 | Zbl 0152.28303

G. Sansone Su un'equazione differenziale non lineare della fisica nucleare, Istituto Nazionale di Alta Matem. Sympozia Mathematica, Vol. VI, (1970). (1970)