Nonsingularity and $P$-matrices.
Rohn, Jiří
Applications of Mathematics, Tome 35 (1990), p. 215-219 / Harvested from Czech Digital Mathematics Library

New proofs of two previously published theorems relating nonsingularity of interval matrices to $P$-matrices are given.

Publié le : 1990-01-01
Classification:  15A03,  15A57,  65F99,  65G10,  65G30
@article{104405,
     author = {Ji\v r\'\i\ Rohn},
     title = {Nonsingularity and $P$-matrices.},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {215-219},
     zbl = {0716.65046},
     mrnumber = {1052742},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104405}
}
Rohn, Jiří. Nonsingularity and $P$-matrices.. Applications of Mathematics, Tome 35 (1990) pp. 215-219. http://gdmltest.u-ga.fr/item/104405/

M. Fiedler Special Matrices and Their Use in Numerical Mathematics, (Czech). SNTL, Prague 1981. (1981)

M. Fiedler V. Pták On Matrices with Non-Positive Off-Diagonal Elements and Positive Principal Minors, Czechoslovak Math. J. 12 (1962), 382-400. (1962) | MR 0142565

D. Gale H. Nikaido The Jacobian Matrix and Global Univalence of Mappings, Math. Annalen 159 (1965), 81-93. (1965) | Article | MR 0204592

S. Poljak J. Rohn Radius of Nonsingularity, KAM Series 88-117, Charles University, Prague 1988. (1988)

J. Rohn Systems of Linear Interval Equations, Lin. Alg. and Its Appls. 126 (1989), 39-78. (1989) | Article | MR 1040771 | Zbl 0712.65029

J. Rohn Characterization of a Linear Program in Standard Form by a Family of Linear Programs with Inequality Constraints, To appear in Ekon.-Mat. Obzor. | MR 1059547 | Zbl 0705.90053

H. Samelson R. Thrall O. Wesler A Partition Theorem for Euclidean n-Space, Proc. of the Amer. Math. Society 9 (1958), 805-807. (1958) | MR 0097025