Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations
Feireisl, Eduard
Applications of Mathematics, Tome 35 (1990), p. 192-208 / Harvested from Czech Digital Mathematics Library

In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation $U_{tt}+dU_t-\sigma(x,t,U_x)_x+aU=f(x,t,U_x,U_t,U)$ with the Dirichlet boundary conditions is proved. No "smallness" assumptions are made concerning the function $f$. The main idea of the proof relies on the compensated compactness theory.

Publié le : 1990-01-01
Classification:  35B10,  35L70,  35Q20,  47J25
@article{104403,
     author = {Eduard Feireisl},
     title = {Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {192-208},
     zbl = {0737.35040},
     mrnumber = {1052740},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104403}
}
Feireisl, Eduard. Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations. Applications of Mathematics, Tome 35 (1990) pp. 192-208. http://gdmltest.u-ga.fr/item/104403/

H. Amann Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl. 65 (1978), 432-467. (1978) | Article | MR 0506318 | Zbl 0387.35038

H. Amann Periodic solutions of semi-linear parabolic equations, Nonlinear Analysis: A collection of papers in honor of Erich Rothe, Academic Press, New York (1978), 1 - 29. (1978) | MR 0499089

K. N. Chueh C. C. Conley J. A. Smoller Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), 373 - 392. (1977) | Article | MR 0430536

W. Craig A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations, Ann. Sci. Norm Sup. Pisa Ser. IV- Vol. 10 (1983), 125-167. (1983) | MR 0713113 | Zbl 0518.35057

R. J. Diperna Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc. 292 (2) (1985), 383 - 420. (1985) | Article | MR 0808729

R. J. Diperna Convergence of approximate solutions to conservation laws, Arch. Rational. Mech. Anal. 82 (1983) 27-70. (1983) | Article | MR 0684413 | Zbl 0519.35054

E. Feireisl Time-dependent invariant regions for parabolic systems related to one-dimensional nonlinear elasticity, Apl. mat. 35 (1990), 184-191. (1990) | MR 1052739 | Zbl 0709.73013

D. Henry Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer-Verlag (1981). (1981) | MR 0610244 | Zbl 0456.35001

P. Krejčí Hard implicit function theorem and small periodic solutions to partial differential equations, Comment. Math. Univ. Carolinae 25 (1984), 519-536. (1984) | MR 0775567

A. Matsumura Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation, Publ. RIMS Kyoto Univ. 13, (1977), 349-379. (1977) | Article | MR 0470507 | Zbl 0371.35030

A. Milani Global existence for quasi-linear dissipative wave equations with large data and small parameter, Math. Z. 198 (1988), 291 - 297. (198 ) | MR 0939542

A. Milani Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations, Ann. Mat. Рurа Appl. 140 (4) (1985), 331-344. (1985) | Article | MR 0807643

T. Nishida Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathématiques D'Orsay 78.02, Univ. Paris Sud (1978). (1978) | MR 0481578 | Zbl 0392.76065

H. Petzeltová Applications of Moser's method to a certain type of evolution equations, Czechoslovak Math. J. 33 (1983), 427-434. (1983) | MR 0718925

H. Petzeltová M. Štědrý Time periodic solutions of telegraph equations in n spatial variables, Časopis Pěst. Mat. 109 (1984), 60-73. (1984) | MR 0741209

P. H. Rabinowitz Periodic solutions of nonlinear hyperbolic partial differential equations II, Comm. Pure Appl. Math. 22 (1969), 15-39. (1969) | Article | MR 0236504 | Zbl 0157.17301

M. Rascle Un résultat de "compacité par compensation à coefficients variables". Application à l'elasticitě non linéaire, C. R. Acad. Sci. Paris 302 Sér. I 8 (1986), 311 - 314. (1986) | MR 0838582 | Zbl 0606.35054

D. Serre La compacité par compensation pour lour les systemes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures et Appl. 65 (1986), 423 - 468. (1986) | MR 0881690

M. Slemrod Damped conservation laws in continuum mechanics, Nonlinear Analysis and Mechanics Vol. III, Pitman New York (1978), 135-173. (1978) | MR 0539691

M. Štědrý Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions, (to appear). | MR 0995505

L. Tartar Compensated compactness and applications to partial differential equations, Research Notes in Math. 39, Pitman Press (1975), 136-211. (1975) | MR 0584398

O. Vejvoda; Al. Partial differential equations: Time periodic solutions, Martinus Nijhoff Publ. (1982). (1982) | Zbl 0501.35001