Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity
Feireisl, Eduard
Applications of Mathematics, Tome 35 (1990), p. 184-191 / Harvested from Czech Digital Mathematics Library

A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.

Publié le : 1990-01-01
Classification:  35B35,  35B45,  35B65,  35K45,  35K55,  73C50,  73D35,  74B20
@article{104402,
     author = {Eduard Feireisl},
     title = {Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {184-191},
     zbl = {0709.73013},
     mrnumber = {1052739},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104402}
}
Feireisl, Eduard. Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity. Applications of Mathematics, Tome 35 (1990) pp. 184-191. http://gdmltest.u-ga.fr/item/104402/

K. N. Chueh C. C. Conley J. A. Smoller Positively invariant regions for systems of non linear diffusion equations, Indiana Univ. Math. J. 26 (1977), 372-7411. (1977) | MR 0430536

C. M. Dafermos Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18 (1987), 409-421. (1987) | Article | MR 0876280 | Zbl 0655.35055

R. J. Diperna Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. (1983) | Article | MR 0684413 | Zbl 0519.35054

M. Rascle Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire, Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. (1986) | MR 0838582

D. Serre Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. Differential Equations 69 (1987), 46-62. (1987) | Article | MR 0897440 | Zbl 0626.35061

D. Serre La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. pures et appl. 65 (1986), 423 - 468. (1986) | MR 0881690

T. D. Venttseľ Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity", Soviet Math. J., 31 (1985), 3148- --3153. (1985) | Article

E. Feireisl Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl. mat. 35 (1990), 192-208. (1990) | MR 1052740 | Zbl 0737.35040