A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
@article{104402, author = {Eduard Feireisl}, title = {Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity}, journal = {Applications of Mathematics}, volume = {35}, year = {1990}, pages = {184-191}, zbl = {0709.73013}, mrnumber = {1052739}, language = {en}, url = {http://dml.mathdoc.fr/item/104402} }
Feireisl, Eduard. Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity. Applications of Mathematics, Tome 35 (1990) pp. 184-191. http://gdmltest.u-ga.fr/item/104402/
Positively invariant regions for systems of non linear diffusion equations, Indiana Univ. Math. J. 26 (1977), 372-7411. (1977) | MR 0430536
Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18 (1987), 409-421. (1987) | Article | MR 0876280 | Zbl 0655.35055
Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. (1983) | Article | MR 0684413 | Zbl 0519.35054
Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire, Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. (1986) | MR 0838582
Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. Differential Equations 69 (1987), 46-62. (1987) | Article | MR 0897440 | Zbl 0626.35061
La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. pures et appl. 65 (1986), 423 - 468. (1986) | MR 0881690
Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity", Soviet Math. J., 31 (1985), 3148- --3153. (1985) | Article
Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl. mat. 35 (1990), 192-208. (1990) | MR 1052740 | Zbl 0737.35040