Robustness of the best linear unbiased estimator and predictor in linear regression models
Štulajter, František
Applications of Mathematics, Tome 35 (1990), p. 162-168 / Harvested from Czech Digital Mathematics Library

If is shown that in linear regression models we do not make a great mistake if we substitute some sufficiently precise approximations for the unknown covariance matrix and covariance vector in the expressions for computation of the best linear unbiased estimator and predictor.

Publié le : 1990-01-01
Classification:  62F35,  62J05,  62M20
@article{104398,
     author = {Franti\v sek \v Stulajter},
     title = {Robustness of the best linear unbiased estimator and predictor in linear regression models},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {162-168},
     zbl = {0704.62049},
     mrnumber = {1042852},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104398}
}
Štulajter, František. Robustness of the best linear unbiased estimator and predictor in linear regression models. Applications of Mathematics, Tome 35 (1990) pp. 162-168. http://gdmltest.u-ga.fr/item/104398/

E. Parzen Time series analysis papers, Holden - Day, San Francisco 1967. (1967) | MR 0223042 | Zbl 0171.39602

C. R. Rao Linear statistical inference and its applications, Wiley, New-York 1965. (1965) | MR 0221616 | Zbl 0137.36203

O. N. Strand Coefficient errors caused by using the wrong covariance matrix in the general linear regression model, Ann. Stat. (2), 1974, 935-949. (1974) | Article | MR 0356378

F. Štulajter Estimators with minimal mean integrated square error in regression models, Submitted to Statistics.

F. Štulajter Estimation in random processes, SNTL - Alfa, Bratislava (to appear in 1989). (1989)

B. Z. Vulich An introduction to functional analysis, (Russian). Nauka, Moscow 1967. (1967) | MR 0218864