If is shown that in linear regression models we do not make a great mistake if we substitute some sufficiently precise approximations for the unknown covariance matrix and covariance vector in the expressions for computation of the best linear unbiased estimator and predictor.
@article{104398, author = {Franti\v sek \v Stulajter}, title = {Robustness of the best linear unbiased estimator and predictor in linear regression models}, journal = {Applications of Mathematics}, volume = {35}, year = {1990}, pages = {162-168}, zbl = {0704.62049}, mrnumber = {1042852}, language = {en}, url = {http://dml.mathdoc.fr/item/104398} }
Štulajter, František. Robustness of the best linear unbiased estimator and predictor in linear regression models. Applications of Mathematics, Tome 35 (1990) pp. 162-168. http://gdmltest.u-ga.fr/item/104398/
Time series analysis papers, Holden - Day, San Francisco 1967. (1967) | MR 0223042 | Zbl 0171.39602
Linear statistical inference and its applications, Wiley, New-York 1965. (1965) | MR 0221616 | Zbl 0137.36203
Coefficient errors caused by using the wrong covariance matrix in the general linear regression model, Ann. Stat. (2), 1974, 935-949. (1974) | Article | MR 0356378
Estimators with minimal mean integrated square error in regression models, Submitted to Statistics.
Estimation in random processes, SNTL - Alfa, Bratislava (to appear in 1989). (1989)
An introduction to functional analysis, (Russian). Nauka, Moscow 1967. (1967) | MR 0218864