Iterative solution of eigenvalue problems for normal operators
Kojecký, Tomáš
Applications of Mathematics, Tome 35 (1990), p. 158-161 / Harvested from Czech Digital Mathematics Library

We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.

Publié le : 1990-01-01
Classification:  47A75,  47B15,  49G20,  65J10
@article{104397,
     author = {Tom\'a\v s Kojeck\'y},
     title = {Iterative solution of eigenvalue problems for normal operators},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {158-161},
     zbl = {0708.65055},
     mrnumber = {1042851},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104397}
}
Kojecký, Tomáš. Iterative solution of eigenvalue problems for normal operators. Applications of Mathematics, Tome 35 (1990) pp. 158-161. http://gdmltest.u-ga.fr/item/104397/

N. Dunford J. T. Schwartz Linear operators, I(II), Mir, Moskva 1962 (1966). (1962) | MR 0216303

T. Kojecký Some results about convergence of Kellogg's iterations in eigenvalue problems, Czechoslovak Math. J. (to appear).

J. Kolomý Approximate determination of eigenvalues and eigenvectors of self-adjoint operators, Ann. Math. Pol. 38 (1980), 153-158. (1980) | MR 0599239

I. Marek Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process, Czechoslovak Math. J. 12 (1962), 536-554. (1962) | MR 0149297 | Zbl 0192.23701