We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
@article{104397, author = {Tom\'a\v s Kojeck\'y}, title = {Iterative solution of eigenvalue problems for normal operators}, journal = {Applications of Mathematics}, volume = {35}, year = {1990}, pages = {158-161}, zbl = {0708.65055}, mrnumber = {1042851}, language = {en}, url = {http://dml.mathdoc.fr/item/104397} }
Kojecký, Tomáš. Iterative solution of eigenvalue problems for normal operators. Applications of Mathematics, Tome 35 (1990) pp. 158-161. http://gdmltest.u-ga.fr/item/104397/
Linear operators, I(II), Mir, Moskva 1962 (1966). (1962) | MR 0216303
Some results about convergence of Kellogg's iterations in eigenvalue problems, Czechoslovak Math. J. (to appear).
Approximate determination of eigenvalues and eigenvectors of self-adjoint operators, Ann. Math. Pol. 38 (1980), 153-158. (1980) | MR 0599239
Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process, Czechoslovak Math. J. 12 (1962), 536-554. (1962) | MR 0149297 | Zbl 0192.23701