We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces $W^{1,p}(0,T)$ for $1\leq p < +\infty$, (localy) Lipschitz continuous in $W^{1,1}(0,T)$ and discontinuous in $W^{1,\infty}(0,T)$ for arbitrary $T>0$. Examples show that this result is optimal.
@article{104387, author = {Pavel Krej\v c\'\i\ and Vladim\'\i r Lovicar}, title = {Continuity of hysteresis operators in Sobolev spaces}, journal = {Applications of Mathematics}, volume = {35}, year = {1990}, pages = {60-66}, zbl = {0705.47054}, mrnumber = {1039411}, language = {en}, url = {http://dml.mathdoc.fr/item/104387} }
Krejčí, Pavel; Lovicar, Vladimír. Continuity of hysteresis operators in Sobolev spaces. Applications of Mathematics, Tome 35 (1990) pp. 60-66. http://gdmltest.u-ga.fr/item/104387/
Systems with hysteresis, (Russian) Moscow, Nauka, 1983. (1983) | MR 0742931
On the theory of hysteresis nonlinearities, (Russian) Dokl. Akad. Nauk SSSR 210 (1973), no. 6, 1284-1287. (1973) | MR 0333869
On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat. 34 (1989), 364-374. (1989) | MR 1014077
On the Preisach model for hysteresis, Nonlinear Anal. T. M. A. 8 (1984), 977-996. (1984) | MR 0760191 | Zbl 0563.35007