Convergence rates for annealing diffusion processes
Márquez, David
Ann. Appl. Probab., Tome 7 (1997) no. 1, p. 1118-1139 / Harvested from Project Euclid
We consider the annealing diffusion process and investigate convergence rates. Namely, the diffusion $dX_t = -\nabla V(X_t)dx+\sigma(t)dB_t$, where $(B_t)_t\leq 0$ is the $d$-dimensional Brownian motion and $\sigma(t)$ decreases to zero, we prove a large deviation principle for $(V(X_t))$ and weak convergence of $(\sigma^{-2}(t)(V(X_t)-\inf V)).$
Publié le : 1997-11-14
Classification:  Simulated annealing,  diffusion,  large deviations,  weak convergence,  62L20,  60F05,  60F10,  60J60
@article{1043862427,
     author = {M\'arquez, David},
     title = {Convergence rates for annealing diffusion processes},
     journal = {Ann. Appl. Probab.},
     volume = {7},
     number = {1},
     year = {1997},
     pages = { 1118-1139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1043862427}
}
Márquez, David. Convergence rates for annealing diffusion processes. Ann. Appl. Probab., Tome 7 (1997) no. 1, pp.  1118-1139. http://gdmltest.u-ga.fr/item/1043862427/