Discrete smoothing splines and digital filtration. Theory and applications
Hřebíček, Jiří ; Šik, František ; Veselý, Vítězslav
Applications of Mathematics, Tome 35 (1990), p. 28-50 / Harvested from Czech Digital Mathematics Library

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1).

Publié le : 1990-01-01
Classification:  41A15,  65D07,  65D10,  65K10,  93E11,  93E14
@article{104385,
     author = {Ji\v r\'\i\ H\v reb\'\i \v cek and Franti\v sek \v Sik and V\'\i t\v ezslav Vesel\'y},
     title = {Discrete smoothing splines and digital filtration. Theory and applications},
     journal = {Applications of Mathematics},
     volume = {35},
     year = {1990},
     pages = {28-50},
     zbl = {0704.65005},
     mrnumber = {1039409},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104385}
}
Hřebíček, Jiří; Šik, František; Veselý, Vítězslav. Discrete smoothing splines and digital filtration. Theory and applications. Applications of Mathematics, Tome 35 (1990) pp. 28-50. http://gdmltest.u-ga.fr/item/104385/

P. M. Anselone P.-J. Laurent A general method for the construction of interpolating or smoothing spline functions, Num. Math. 12 (1968) No. 1, 66-82. (1968) | Article | MR 0249904

P. Bečička J. Hřebíček F. Šik Numerical analysis of smoothing splines, (Czech). Proceed. 9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22-24. (1987)

K. Böhmer Spline-Funktionen, Teubner, Stuttgart, 1974. (1974) | MR 0613676

E. O. Brigham The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974. (1974) | Zbl 0375.65052

C. S. Burrus T. W. Parks DFT/FFT and Convolution Algorithms, Wiley Interscience, 1985. (1985)

P. Craven G. Wahba Smoothing Noisy Data with Spline Functions, Numer. Math. 31 (1979), 377-403. (1979) | Article | MR 0516581

D. F. Elliot K. R. Rao Fast transforms. Algorithms, Analyses, Applications, Acad. Press, New York, London, 1982. (1982) | MR 0696936

W. Gautschi Attenuation Factors in Practical Fourier Analysis, Num. Math. 18 (1972), 373-400. (1972) | Article | MR 0305641 | Zbl 0231.65101

M. H. Gutknecht Attenuation factors in multivariate Fourier analysis, Num. Math. 51 (1987), 615-629. (1987) | Article | MR 0914342 | Zbl 0639.65079

J. Hřebíček F. Šik V. Veselý Digital convolution filters and smoothing splines, Proceed. 2nd ISNA (I. Marek, ed.), Prague 1987, Teubner, Leipzig, 1988, 187-193. (1987) | MR 1171704

J. Hřebíček F. Šik V. Veselý How to choose the smoothing parameter of a periodic smoothing spline, (to appear).

J. Hřebíček F. Šik P. Švenda V. Veselý Smoothing splines and digital filtration, Research Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987. (1987)

L. V. Kantorovič V. I. Krylov Approximate methods of higher analysis, (in Russian). 4. ed. Moskva, 1952. (1952) | MR 0106537

P. J. Laurent Approximation et Optimisation, Hermann, Paris, 1972. (1972) | MR 0467080 | Zbl 0238.90058

F. Locher Interpolation on uniform meshes by the translates of one function and related attenuation factors, Math. Comput. 37 (1981) No. 156, 403 - 416. (1981) | Article | MR 0628704 | Zbl 0517.42004

M. Marcus H. Minc A survey of matrix theory and matrix inequalities, Boston 1964 (Russian translation, Nauka, Moskva, 1972). (1964) | MR 0349699

H. J. Nussbaumer Fast Fourier Transform and Convolution Algorithms, 2nd ed., Springer, Berlin, Heidelberg, New York, 1982. (1982) | MR 0606376

V. A. Vasilenko Spline-Functions: Theory, Algorithms, Programs, (in Russian). Nauka, Novosibirsk, 1983. (1983) | MR 0721970 | Zbl 0529.41013

J. Hřebíček F. Šik V. Veselý Smoothing by discrete splines and digital convolution filters, (Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Hřebíček, ed.) Blansko 1988, ÚFM ČSAV Brno 1988, 62-70. (1988)