A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda$-regular, if each atom is a member of just $\lambda$ blocks. We estimate the minimal number of blocks of $\lambda$-regular orthomodular lattices to be lower than of equal to $\lambda^2$ regardless of $k$.
@article{104375, author = {Vladim\'\i r Rogalewicz}, title = {A remark on $\lambda$-regular orthomodular lattices}, journal = {Applications of Mathematics}, volume = {34}, year = {1989}, pages = {449-452}, zbl = {0689.06008}, mrnumber = {1026509}, language = {en}, url = {http://dml.mathdoc.fr/item/104375} }
Rogalewicz, Vladimír. A remark on $\lambda$-regular orthomodular lattices. Applications of Mathematics, Tome 34 (1989) pp. 449-452. http://gdmltest.u-ga.fr/item/104375/
Astroids and pastings, Algebra Universalis 18 (1984), 380-385. (1984) | Article | MR 0745498 | Zbl 0546.06007
Orthomodular lattices admitting no states, J. Combinatorial Theory 10 (1971), 119-132. (1971) | Article | MR 0274355 | Zbl 0219.06007
Orthomodular Lattices, Academic Press, London, 1984. (1984) | MR 0716496 | Zbl 0538.06009
Orthomodulare Verbände rnit Regularitätsbedingungen, J. of Geometry 119 (1982), 130-145. (1982) | Article | MR 0695705
The pasting constructions for Orthomodular posets, Submitted for publication.
Any orthomodular poset is a pasting of Boolean algebras, Comment. Math. Univ. Carol. 29 (1988), 557-558. (1988) | MR 0972837 | Zbl 0659.06006