A remark on $\lambda$-regular orthomodular lattices
Rogalewicz, Vladimír
Applications of Mathematics, Tome 34 (1989), p. 449-452 / Harvested from Czech Digital Mathematics Library

A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda$-regular, if each atom is a member of just $\lambda$ blocks. We estimate the minimal number of blocks of $\lambda$-regular orthomodular lattices to be lower than of equal to $\lambda^2$ regardless of $k$.

Publié le : 1989-01-01
Classification:  03G12,  05C65,  06C15
@article{104375,
     author = {Vladim\'\i r Rogalewicz},
     title = {A remark on $\lambda$-regular orthomodular lattices},
     journal = {Applications of Mathematics},
     volume = {34},
     year = {1989},
     pages = {449-452},
     zbl = {0689.06008},
     mrnumber = {1026509},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104375}
}
Rogalewicz, Vladimír. A remark on $\lambda$-regular orthomodular lattices. Applications of Mathematics, Tome 34 (1989) pp. 449-452. http://gdmltest.u-ga.fr/item/104375/

M. Dichtl Astroids and pastings, Algebra Universalis 18 (1984), 380-385. (1984) | Article | MR 0745498 | Zbl 0546.06007

R. J. Greechie Orthomodular lattices admitting no states, J. Combinatorial Theory 10 (1971), 119-132. (1971) | Article | MR 0274355 | Zbl 0219.06007

G. Kalmbach Orthomodular Lattices, Academic Press, London, 1984. (1984) | MR 0716496 | Zbl 0538.06009

E. Köhler Orthomodulare Verbände rnit Regularitätsbedingungen, J. of Geometry 119 (1982), 130-145. (1982) | Article | MR 0695705

M. Navara V. Rogalewicz The pasting constructions for Orthomodular posets, Submitted for publication.

V. Rogalewicz Any orthomodular poset is a pasting of Boolean algebras, Comment. Math. Univ. Carol. 29 (1988), 557-558. (1988) | MR 0972837 | Zbl 0659.06006