AR models with uniformly distributed noise
Horváth, Michal
Applications of Mathematics, Tome 34 (1989), p. 396-401 / Harvested from Czech Digital Mathematics Library

AR models are frequently used but usually with normally distributed white noise. In this paper AR model with uniformly distributed white noise are introduces. The maximum likelihood estimation of unknown parameters is treated, iterative method for the calculation of estimates is presented. A numerical example of this procedure and simulation results are also given.

Publié le : 1989-01-01
Classification:  62M10,  65C99,  65U05
@article{104367,
     author = {Michal Horv\'ath},
     title = {AR models with uniformly distributed noise},
     journal = {Applications of Mathematics},
     volume = {34},
     year = {1989},
     pages = {396-401},
     zbl = {0694.65075},
     mrnumber = {1014080},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104367}
}
Horváth, Michal. AR models with uniformly distributed noise. Applications of Mathematics, Tome 34 (1989) pp. 396-401. http://gdmltest.u-ga.fr/item/104367/

G. E. P. Box G. M. Jenkins Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco 1970. (1970) | MR 0272138

N. Davies T. Spedding W. Watson Autoregressive moving average process with non-normal residueals, J. Time Series Anal. 2 (1980), 155-171. (1980)

A. J. Lawrence P. A. W. Lewis The exponential autoregressive moving - average EARMA $(p, q)$ process, J. Roy. Statist. Soc., B 42 (1980), 150-161, (1980) | MR 0583349

R. D. Martin V. J. Yohai Robustness in Time Series and Estimating ARMA Models, Proc. Handbook of Statistics 5 Time Series in the Time Domain, Elsevier, Amsterdam 1985. (1985) | MR 0831746

R. L. Kashyap A. R. Rao Dynamic Stochastic Models from Empirical Data, Academic Press, New York 1976. (1976)