Energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of waves is independent of the hysteresis operator.
@article{104364, author = {Pavel Krej\v c\'\i }, title = {On Maxwell equations with the Preisach hysteresis operator: The one- dimensional time-periodic case}, journal = {Applications of Mathematics}, volume = {34}, year = {1989}, pages = {364-374}, zbl = {0701.35098}, mrnumber = {1014077}, language = {en}, url = {http://dml.mathdoc.fr/item/104364} }
Krejčí, Pavel. On Maxwell equations with the Preisach hysteresis operator: The one- dimensional time-periodic case. Applications of Mathematics, Tome 34 (1989) pp. 364-374. http://gdmltest.u-ga.fr/item/104364/
Электромагнетизм и электромагнитные волны, Высшая школа, Москва, 1985. (1985) | Zbl 1223.81132
Системы с гистерезисом, Наука, Москва, 1983. (1983) | Zbl 1229.47001
Hysteresis and periodic solutions to semilinear and quasilinear wave equations, Math. Z. 193, 247-264 (1986). (193,) | Article | MR 0856153
On Ishlinskii's model for non-perfectly elastic bodies, Apl. mat. 33(1988), 133-144. (1988) | MR 0940712
A monotonicity method for solving hyperbolic problems with hysteresis, Apl. mat. 33 (1988), 197-203. (1988) | MR 0944783
Quasilinear wave equation with hysteresis: an initial-boundary-value problem, To appear.
On the Preisach model for hysteresis, Nonlinear Anal. T.M.A. 8, 977-996 (1984). (1984) | MR 0760191 | Zbl 0563.35007
Une généralisation vectorielle du modèle de Preisach pour l'hystérésis, C.R. Acad. Sc. Paris 297, sér. I, 437-440 (1983). (1983) | MR 0732853