On non-ergodic versions of limit theorems
Volný, Dalibor
Applications of Mathematics, Tome 34 (1989), p. 351-363 / Harvested from Czech Digital Mathematics Library

The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.

Publié le : 1989-01-01
Classification:  28D05,  60B10,  60F05,  60F17,  60G10,  60G40
@article{104363,
     author = {Dalibor Voln\'y},
     title = {On non-ergodic versions of limit theorems},
     journal = {Applications of Mathematics},
     volume = {34},
     year = {1989},
     pages = {351-363},
     zbl = {0707.60027},
     mrnumber = {1014076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104363}
}
Volný, Dalibor. On non-ergodic versions of limit theorems. Applications of Mathematics, Tome 34 (1989) pp. 351-363. http://gdmltest.u-ga.fr/item/104363/

P. Billingsley Ergodic Theory and Information, Wiley, New York, (1964). (1964) | MR 0192027

P. Billingsley The Lindenberg-Lévy theorem for martingales, Proc. Amer. Math. Soc. 12 (1961), 788-792. (1961) | MR 0126871

G. K. Eagleson On Gordin's central limit theorem for stationary processes, J. Appl. Probab. 12 (1975), 176-179. (1975) | Article | MR 0383501 | Zbl 0306.60017

C. G. Esseen S. Janson On moment conditions for normed sums of independent variables and martingale differences, Stoch. Proc. and their Appl. 19 (1985). 173-182. (1985) | Article | MR 0780729

M. I. Gordin The central limit theorem for stationary processes, Soviet Math. Dokl. 10 (1969), 1174-1176. (1969) | MR 0251785 | Zbl 0212.50005

M. I. Gordin Abstracts of Communications, T.1: A-K, International conference on probability theory (Vilnius, 1973). (1973)

P. Hall C. C. Heyde Martingale Limit Theory and its Applications, Academic Press, New York, 1980. (1980) | MR 0624435

C. C. Heyde On central limit and iterated logarithm supplements to the martingale convergence theorem, J. Appl. Probab. 14 (1977), 758-775. (1977) | Article | MR 0517475 | Zbl 0385.60033

C. C. Heyde On the central limit theorem for stationary processes, Z. Wahrsch. Verw. Gebiete 30 (1974), 315-320. (1974) | Article | MR 0372955 | Zbl 0297.60014

C. C. Heyde On the central limit theorem and iterated logarithm law for stationary processes, Bull. Austral. Math. Soc. 12 (1975), 1-8. (1975) | Article | MR 0372954 | Zbl 0287.60035

I. A. Ibragimov A central limit theorem for a class of dependent random variables, Theory Probab. Appl. 8 (1963), 83-89. (1963) | MR 0151997 | Zbl 0123.36103

M. Loève Probability Theory, Van Nostrand, New York, 1955. (1955) | MR 0203748

J. C. Oxtoby Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. (1952) | Article | MR 0047262 | Zbl 0046.11504

D. Volný The central limit problem for strictly stationary sequences, Ph. D. Thesis, Mathematical Inst. Charles University, Praha, 1984. (1984)

D. Volný Approximation of stationary processes and the central limit problem, LN in Mathematics 1299 (Proceedings of the Japan- USSR Symposium on Probability Theory, Kyoto 1986) 532-540. (1986) | MR 0936028

D. Volný Martingale decompositions of stationary processes, Yokohama Math. J. 35 (1987), 113-121. (1987) | MR 0928378

D. Volný Counterexamples to the central limit problem for stationary dependent random variables, Yokohama Math. J. 36 (1988), 69-78. (1988) | MR 0978876

D. Volný On the invariance principle and functional law of iterated logarithm for non ergodic processes, Yokohama Math. J. 35 (1987), 137-141. (1987) | MR 0928380

D. Volný A non ergodic version of Gordin's CLT for integrable stationary processes, Comment. Math. Univ. Carolinae 28, 3 (1987), 419-425. (1987) | MR 0912569

K. Winkelbauer , personal communication. | Zbl 0584.94013