A fast iteration for uniform approximation
Kálovics, Ferenc
Applications of Mathematics, Tome 33 (1988), p. 269-276 / Harvested from Czech Digital Mathematics Library

The paper gives such an iterative method for special Chebyshev approxiamtions that its order of convergence is $\geq 2$. Somewhat comparable results are found in [1] and [2], based on another idea.

Publié le : 1988-01-01
Classification:  41A50,  49D35,  65D15
@article{104308,
     author = {Ferenc K\'alovics},
     title = {A fast iteration for uniform approximation},
     journal = {Applications of Mathematics},
     volume = {33},
     year = {1988},
     pages = {269-276},
     zbl = {0664.65013},
     mrnumber = {0949248},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104308}
}
Kálovics, Ferenc. A fast iteration for uniform approximation. Applications of Mathematics, Tome 33 (1988) pp. 269-276. http://gdmltest.u-ga.fr/item/104308/

K. Glasshoff S. A. Gustafson Linear Optimization and Approximation, Springer-Verlag, New York, 1983. (1983) | MR 0697234

F. Kálovics An agorithm for best Chebyshev approxmations, Annales. Univ. Sci. Budapestinensis, Sectio Computatorica, 6(1985), 19-25. (1985) | MR 0915220

J. M. Ortega W. C. Rheinboldt Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. (1970) | MR 0273810