An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.
@article{104304, author = {Ivan Hlav\'a\v cek}, title = {Domain optimization in axisymmetric elliptic boundary value problems by finite elements}, journal = {Applications of Mathematics}, volume = {33}, year = {1988}, pages = {213-244}, zbl = {0677.65102}, mrnumber = {0944785}, language = {en}, url = {http://dml.mathdoc.fr/item/104304} }
Hlaváček, Ivan. Domain optimization in axisymmetric elliptic boundary value problems by finite elements. Applications of Mathematics, Tome 33 (1988) pp. 213-244. http://gdmltest.u-ga.fr/item/104304/
Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal, Appl. Math. & Optim. 2 (1975), 130-169. (1975) | MR 0443372
Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et series de Fourier en $\theta$, R. A. I. R. O. , Anal. numér., 16 (1982), 405-461. (1982) | MR 0684832
Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) | MR 0227584
Interpolation Theory, Function Spaces, Differential Operators, DVW, Berlin 1978. (1978) | MR 0503903 | Zbl 0387.46033
The finite element method for elliptic problems, North- Holland, Amsterdam 1978. (1978) | MR 0520174 | Zbl 0383.65058