Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method
Zítko, Jan
Applications of Mathematics, Tome 33 (1988), p. 177-196 / Harvested from Czech Digital Mathematics Library

Limits of the extrapolation coefficients are rational functions of several poles with the largest moduli of the resolvent operator $R(\lambda, T)=(\lambda I -T)^{-1}$ and therefore good estimates of these poles could be calculated from these coefficients. The calculation is very easy for the case of two coefficients and its practical effect in finite dimensional space is considerable. The results are used for acceleration of S.O.R. method.

Publié le : 1988-01-01
Classification:  65B05,  65F10,  65J10
@article{104301,
     author = {Jan Z\'\i tko},
     title = {Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method},
     journal = {Applications of Mathematics},
     volume = {33},
     year = {1988},
     pages = {177-196},
     zbl = {0655.65058},
     mrnumber = {0944782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104301}
}
Zítko, Jan. Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method. Applications of Mathematics, Tome 33 (1988) pp. 177-196. http://gdmltest.u-ga.fr/item/104301/

J. Zítko Improving the convergence of iterative methods, Apl. Mat. 28 (1983), 215-229. (1983) | MR 0701740

J. Zítko Convergence of extrapolation coefficients, Apl. Mat. 29 (1984), 114-133. (1984) | MR 0738497

J. Zítko Extrapolation of iterative processes, Rostock. Math. Kolloq. 25, 63-78 (1984). (1984) | MR 0763678

I. Marek J. Zítko Ljusternik acceleration and the extrapolated S.O.R. method, Appl. Mat. 22 (1977), 116-133. (1977) | MR 0431667

A. E. Taylor Introduction to Functional Analysis, J. Wiley Publ. New-York 1958. (1958) | MR 0098966 | Zbl 0081.10202

D. M. Young Iterative Solution of Large Linear Systems, Academic Press, New York- London, 1971. (1971) | MR 0305568 | Zbl 0231.65034

R. S. Varga Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey 1962. (1962) | MR 0158502

G. Maess Extrapolation bei Iterationsverfahren, ZAMM 56 (1976), 121-122. (1976) | Article | MR 0426417

G. Maess Iterative Lösung linearer Gleichungssysteme, Deutsche Akademie der Naturforscher Leopoldina Halle (Saale), 1979. (1979) | MR 0558164 | Zbl 0416.65029