Limits of the extrapolation coefficients are rational functions of several poles with the largest moduli of the resolvent operator $R(\lambda, T)=(\lambda I -T)^{-1}$ and therefore good estimates of these poles could be calculated from these coefficients. The calculation is very easy for the case of two coefficients and its practical effect in finite dimensional space is considerable. The results are used for acceleration of S.O.R. method.
@article{104301, author = {Jan Z\'\i tko}, title = {Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method}, journal = {Applications of Mathematics}, volume = {33}, year = {1988}, pages = {177-196}, zbl = {0655.65058}, mrnumber = {0944782}, language = {en}, url = {http://dml.mathdoc.fr/item/104301} }
Zítko, Jan. Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method. Applications of Mathematics, Tome 33 (1988) pp. 177-196. http://gdmltest.u-ga.fr/item/104301/
Improving the convergence of iterative methods, Apl. Mat. 28 (1983), 215-229. (1983) | MR 0701740
Convergence of extrapolation coefficients, Apl. Mat. 29 (1984), 114-133. (1984) | MR 0738497
Extrapolation of iterative processes, Rostock. Math. Kolloq. 25, 63-78 (1984). (1984) | MR 0763678
Ljusternik acceleration and the extrapolated S.O.R. method, Appl. Mat. 22 (1977), 116-133. (1977) | MR 0431667
Introduction to Functional Analysis, J. Wiley Publ. New-York 1958. (1958) | MR 0098966 | Zbl 0081.10202
Iterative Solution of Large Linear Systems, Academic Press, New York- London, 1971. (1971) | MR 0305568 | Zbl 0231.65034
Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey 1962. (1962) | MR 0158502
Extrapolation bei Iterationsverfahren, ZAMM 56 (1976), 121-122. (1976) | Article | MR 0426417
Iterative Lösung linearer Gleichungssysteme, Deutsche Akademie der Naturforscher Leopoldina Halle (Saale), 1979. (1979) | MR 0558164 | Zbl 0416.65029