We prove the existence and find necessary and sufficient conditions for the uniqueness of the time-periodic solution to the equations $u_{tt} - \Delta_xu \pm F(u) = g(x,t)$ for an arbitrary (sufficiently smooth) periodic right-hand side $g$, where $\Delta_x$ denotes the Laplace operator with respect to $x\in \Omega \subset R^N, N\geq 1$, and $F$ is the Ishlinskii hysteresis operator. For $N=2$ this equation describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.
@article{104295, author = {Pavel Krej\v c\'\i }, title = {Forced periodic vibrations of an elastic system with elastico-plastic damping}, journal = {Applications of Mathematics}, volume = {33}, year = {1988}, pages = {145-153}, zbl = {0649.73029}, mrnumber = {0940713}, language = {en}, url = {http://dml.mathdoc.fr/item/104295} }
Krejčí, Pavel. Forced periodic vibrations of an elastic system with elastico-plastic damping. Applications of Mathematics, Tome 33 (1988) pp. 145-153. http://gdmltest.u-ga.fr/item/104295/
Интегральные представления функций и теоремы вложения, Москва, Наука, 1975. (1975) | Zbl 1231.90252
Некоторые применения статистики к описанию законов деформирования тел, Изв. АН СССР, OTH, 1944, но. 9, 583-590. (1944) | Zbl 0149.19102
Системы с гистерезисом, Москва, Наука, 1983. (1983) | Zbl 1229.47001
Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z. 193 (1986), 247-264. (193 ) | Article | MR 0856153
On Ishlinskii's model for non-perfectly elastic bodies, To appear.
Les méthodes directes en théorie des équations elliptiques, Academia, Praha, 1967. (1967) | MR 0227584
On the Preisach model for hysteresis, Nonlinear Anal. T.M.A. 8 (1984), 977-996. (1984) | MR 0760191 | Zbl 0563.35007
Evolution problems with hysteresis in the source term, Ist. Anal. Num. C.N.R., Pavia, Italy. Preprint no. 326. | MR 0853520 | Zbl 0618.35053