On Ishlinskij's model for non-perfectly elastic bodies
Krejčí, Pavel
Applications of Mathematics, Tome 33 (1988), p. 133-144 / Harvested from Czech Digital Mathematics Library

The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator $F$, which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation $u'' + F(u)=0$ describing the motion of a mass point at the extremity of an elastico-plastic spring.

Publié le : 1988-01-01
Classification:  34A10,  34G20,  34K15,  34K25,  34K99,  46E35,  47H99,  73C50,  73E99,  74B99,  74S30
@article{104294,
     author = {Pavel Krej\v c\'\i },
     title = {On Ishlinskij's model for non-perfectly elastic bodies},
     journal = {Applications of Mathematics},
     volume = {33},
     year = {1988},
     pages = {133-144},
     zbl = {0653.73013},
     mrnumber = {0940712},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104294}
}
Krejčí, Pavel. On Ishlinskij's model for non-perfectly elastic bodies. Applications of Mathematics, Tome 33 (1988) pp. 133-144. http://gdmltest.u-ga.fr/item/104294/

А.Ю. Ишлинский Некоторые применения статистики к описанию законов деформирования тел, Изв. АН СССР, OTH, 1944, № 9, 583-590. (1944) | Zbl 0149.19102

M. А. Красносельский А. В. Покровский Системы с гистерезисом, Москва, Наука, 1983. (1983) | Zbl 1229.47001

P. Krejčí Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z. 193 (1986), 247-264. (193 ) | Article | MR 0856153

P. Krejčí Existence and large time behaviour of solutions to equations with hysteresis, Matematický ústav ČSAV, Praha, Preprint no. 21, 1986. (1986)