The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator $F$, which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation $u'' + F(u)=0$ describing the motion of a mass point at the extremity of an elastico-plastic spring.
@article{104294, author = {Pavel Krej\v c\'\i }, title = {On Ishlinskij's model for non-perfectly elastic bodies}, journal = {Applications of Mathematics}, volume = {33}, year = {1988}, pages = {133-144}, zbl = {0653.73013}, mrnumber = {0940712}, language = {en}, url = {http://dml.mathdoc.fr/item/104294} }
Krejčí, Pavel. On Ishlinskij's model for non-perfectly elastic bodies. Applications of Mathematics, Tome 33 (1988) pp. 133-144. http://gdmltest.u-ga.fr/item/104294/
Некоторые применения статистики к описанию законов деформирования тел, Изв. АН СССР, OTH, 1944, № 9, 583-590. (1944) | Zbl 0149.19102
Системы с гистерезисом, Москва, Наука, 1983. (1983) | Zbl 1229.47001
Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z. 193 (1986), 247-264. (193 ) | Article | MR 0856153
Existence and large time behaviour of solutions to equations with hysteresis, Matematický ústav ČSAV, Praha, Preprint no. 21, 1986. (1986)