Free vibrations for the equation of a rectangular thin plate
Feireisl, Eduard
Applications of Mathematics, Tome 33 (1988), p. 81-93 / Harvested from Czech Digital Mathematics Library

In the paper, we deal with the equation of a rectangular thin plate with a simply supported boundary. The restoring force being an odd superlinear function of the vertical displacement, the existence of infinitely many nonzero time-periodic solutions is proved.

Publié le : 1988-01-01
Classification:  35B10,  35L70,  58E05,  73K12,  74H45,  74K20
@article{104290,
     author = {Eduard Feireisl},
     title = {Free vibrations for the equation of a rectangular thin plate},
     journal = {Applications of Mathematics},
     volume = {33},
     year = {1988},
     pages = {81-93},
     zbl = {0648.73024},
     mrnumber = {0940708},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104290}
}
Feireisl, Eduard. Free vibrations for the equation of a rectangular thin plate. Applications of Mathematics, Tome 33 (1988) pp. 81-93. http://gdmltest.u-ga.fr/item/104290/

H. Amann G. Mancini Some applications of monotone operator theory to resonance problems, Nonlinear Anal. 3 (1979), 815-830. (1979) | Article | MR 0548954

K. C. Chang L. Sanchez Nontrivial periodic solutions of a nonlinear beam equation, Math. Meth. in the Appl. Sci. 4 (1982), 194-205. (1982) | Article | MR 0659037

E. Feireisl On periodic solutions of a beam equation, (Czech.). Thesis, Fac. Math. Phys. of Charles Univ., Prague 1982. (1982)

V. Lovicar Free vibrations for the equation $u_{tt} - u_{xx} + f(u) = 0$ with f sublinear, Proceedings of EQUADIFF 5, Teubner Texte zur Mathematik, Band 47, 228-230. | MR 0715981

P. H. Rabinowitz Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), 31-68. (1978) | Article | MR 0470378 | Zbl 0341.35051