An efficient algorithm for computing real powers of a matrix and a related matrix function
Ježek, Jan
Applications of Mathematics, Tome 33 (1988), p. 22-32 / Harvested from Czech Digital Mathematics Library

The paper is devoted to an algorithm for computing matrices $A^r$ and $(A^r -I).(A-I)^{-1}$ for a given square matrix $A$ and a real $r$. The algorithm uses the binary expansion of $r$ and has the logarithmic computational complexity with respect to $r$. The problem stems from the control theory.

Publié le : 1988-01-01
Classification:  15A60,  65F30,  68Q25
@article{104283,
     author = {Jan Je\v zek},
     title = {An efficient algorithm for computing real powers of a matrix and a related matrix function},
     journal = {Applications of Mathematics},
     volume = {33},
     year = {1988},
     pages = {22-32},
     zbl = {0637.65036},
     mrnumber = {0934371},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104283}
}
Ježek, Jan. An efficient algorithm for computing real powers of a matrix and a related matrix function. Applications of Mathematics, Tome 33 (1988) pp. 22-32. http://gdmltest.u-ga.fr/item/104283/

F. R. Gantmacher Theory of matrices, (in Russian). Moscow 1966. English translation: Chelsea, New York 1966. (1966)

B. Randell L. J. Russel Algol 60 Implementation, Academic Press 1964. Russian translation: Mir 1967. (1964) | MR 0215554

D. E. Knuth The art of computer programming, vol 2, Addison-Wesley 1969. Russian translation: Mir 1977. (1969) | MR 0633878 | Zbl 0191.18001

J. Ježek Computation of matrix exponential, square root and logarithm, (in Czech). Knižnica algoritmov, diel III, symposium Algoritmy, SVTS Bratislava 1975. (1975)

J.Ježek General matrix power and sum of matrix powers, (in Czech). Knižnica algoritmov, diel IX, symposium Algoritmy, SVTS Bratislava 1987. (1987)