Optimal control of variational inequality with applications to axisymmetric shells
Lovíšek, Ján
Applications of Mathematics, Tome 32 (1987), p. 459-479 / Harvested from Czech Digital Mathematics Library

The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables.

Publié le : 1987-01-01
Classification:  49A27,  49A29,  58E25,  58E35,  58E99,  74K15,  74P99
@article{104277,
     author = {J\'an Lov\'\i \v sek},
     title = {Optimal control of variational inequality with applications to axisymmetric shells},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {459-479},
     zbl = {0647.73042},
     mrnumber = {0916062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104277}
}
Lovíšek, Ján. Optimal control of variational inequality with applications to axisymmetric shells. Applications of Mathematics, Tome 32 (1987) pp. 459-479. http://gdmltest.u-ga.fr/item/104277/

R. A. Adams Sobolev spaces, Academic Press, New York, San Francisco, London 1975. (1975) | MR 0450957 | Zbl 0314.46030

H. Attouch Convergence des solutions d'inequations variationnelles avec obstacle, Proceedings of the international meeting on recent methods in nonlinear analysis. Rome, may 1978, ed. by E. De Giorgi - E. Magenes - U. Mosco. (1978)

V. Barbu Optimal control of variational inequalities, Pitman Advanced Publishing Program, Boston, London, Melbourne 1984. (1984) | MR 0742624 | Zbl 0574.49005

I. Boccardo A. Dolcetta Stabilita delle soluzioni di disequazioni variazionali ellitiche e paraboliche quasi - lineari, Ann. Universeta Ferrara, 24 (1978), 99-111. (1978)

J. M. Boisserie; Glowinski Optimization of the thickness law for thin axisymmetric shells, Computers 8. Structures, 8 (1978), 331-343. (1978) | Zbl 0379.73090

I. Hlaváček Optimalization of the shape of axisymmetric shells, Aplikace matematiky 28, с. 4, pp. 269-294. | MR 0710176

J. L. Lions Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Paris, 1969. (1969) | MR 0259693 | Zbl 0189.40603

F. Mignot Controle dans les inéquations variationelles elliptiques, Journal Functional Analysis. 22 (1976), 130-185. (1976) | Article | MR 0423155 | Zbl 0364.49003

J. Nečas Les méthodes directes en theorie des équations elliptiques, Academia, Praha, 1967. (1967) | MR 0227584

J. Nečas I. Hlaváček Mathematical theory of elastic and elasto-plastic bodies. An introduction, Amsterdam, Elsevier, 1981. (1981) | MR 0600655

P. D. Panagiotopoulos Inequality problems in mechanics and applications, Birkhäuser, Boston-Basel-Stuttgart, 1985. (1985) | MR 0896909 | Zbl 0579.73014

J. P. Yvon Controle optimal de systémes gouvernes par des inéquations variationnelles, Rapport Laboria, February 1974. (1974)

O. C. Zienkiewcz The Finite Element Method in Engineering, Science, McGraw Hill, London, 1984. (1984)