The method of least wquares is usually used in a linear regression model $\bold {Y=X\beta+\epsilon}$ for estimating unknown parameters $\bold \beta$. The case when $\epsilon$ is an autoregressive process of the first order and the matrix $\bold X$ corresponds to a linear trend is studied and the Bayes approach is used for estimating the parameters $\bold \beta$. Unbiased Bayes estimators are derived for the case of a small number of observations. These estimators are compared with the locally best unbiased ones and with the usual least squares estimators.
@article{104276, author = {Franti\v sek \v Stulajter}, title = {Bayes unbiased estimators of parameters of linear trend with autoregressive errors}, journal = {Applications of Mathematics}, volume = {32}, year = {1987}, pages = {451-458}, zbl = {0632.62091}, mrnumber = {0916061}, language = {en}, url = {http://dml.mathdoc.fr/item/104276} }
Štulajter, František. Bayes unbiased estimators of parameters of linear trend with autoregressive errors. Applications of Mathematics, Tome 32 (1987) pp. 451-458. http://gdmltest.u-ga.fr/item/104276/
Statistical Analysis of Time series, (Czech) SNTL, Praha 1976. (1976)
Linear Statistical Inference and Its Applications, J. Wiley, N. York 1965. (1965) | MR 0221616 | Zbl 0137.36203
An Introduction to Bayesian Inference in Econometric, J. Wiley, N. York 1971. (1971) | MR 0433791