The quantized Jacobi polynomials
Lukš, Antonín
Applications of Mathematics, Tome 32 (1987), p. 417-426 / Harvested from Czech Digital Mathematics Library

The author studies a system of polynomials orthogonal at a finite set of points its weight approximating that of the orthogonal system of classical Jacobi polynomials.

Publié le : 1987-01-01
Classification:  33A65,  33C45,  42C05,  65D10,  65D20
@article{104273,
     author = {Anton\'\i n Luk\v s},
     title = {The quantized Jacobi polynomials},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {417-426},
     zbl = {0644.33018},
     mrnumber = {0916058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104273}
}
Lukš, Antonín. The quantized Jacobi polynomials. Applications of Mathematics, Tome 32 (1987) pp. 417-426. http://gdmltest.u-ga.fr/item/104273/

N. Y. Vilenkin Special Functions and Representation Theory of Groups, Nauka, Moscow 1965. (In Russian; English translation: Amer. Math. Soc., Providence 1968.) (1965)

A. S. Holevo Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam 1982. (1982) | MR 0681693 | Zbl 0497.46053

H. Bateman A. Erdélyi Higher Transcendental Functions, Vol. 2. McGraw-Hill. New York 1953. (1953) | MR 0058756

M. Weber A. Erdélyi On the finite difference analogue of Rodrigues' formula, Amer. Math. Monthly, Washington, 59 (1952), 163-168. (1952) | Article | MR 0054094

Radhakrishna C. Rao Linear Statistical Inference and Its Applications, J. Wiley, New York 1973. (1973) | MR 0346957

A. Ralston A First Course in Numerical Analysis, McGraw-Нill, New York 1965. (1965) | Zbl 0139.31603

B. P. Demidovich I. A. Maron E. Z. Shuvalova Numerical Methods of Analysis. Approximation of Functions, Differential and Integral Equations, Nauka, Moscow 1967 (in Russian). (1967)