The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms.
@article{104270, author = {Ji\v r\'\i\ Kobza}, title = {An algorithm for biparabolic spline}, journal = {Applications of Mathematics}, volume = {32}, year = {1987}, pages = {401-413}, zbl = {0635.65006}, mrnumber = {0909546}, language = {en}, url = {http://dml.mathdoc.fr/item/104270} }
Kobza, Jiří. An algorithm for biparabolic spline. Applications of Mathematics, Tome 32 (1987) pp. 401-413. http://gdmltest.u-ga.fr/item/104270/
A practical guide to splines, Springer, N. Y. 1978. (1978) | MR 0507062 | Zbl 0406.41003
On algorithms for parabolic splines, Acta UPO, FRN, Vol. 88, Math. XXVI (to appear) | MR 1033338 | Zbl 0693.65005
Evaluation and mapping of parabolic interpolating spline, (Czech). Knižnica algoritmov, IX. diel, str. 51-58; JSMF Bratislava 1987. (1987)
Сплайн-аппроксимация функций, Москва, Наука 1983. (1983) | Zbl 1229.47001
Сплайны в вычислительной математике, Москва, Наука 1976. (1976) | Zbl 1226.05083
Spline analysis, Prentice-Hall, N. J. 1973. (1973) | MR 0362832 | Zbl 0333.41009
Методы сплайн-функций, Москва, Наука 1980. (1980) | Zbl 1229.60003